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Newly recognized occurrences of ultrahigh-pressure 
minerals in ultrahigh-temperature felsic granulites and 
in chromitite associated with ophiolite complexes lead 

to speculation about the recycling of supracrustal materials 
through deep subduction, mantle upwelling, and return to the 
Earth’s surface. This idea is supported by possible “organic” 
light carbon isotopes observed in diamond and moissanite in 
kimberlite xenoliths and chromitite. These fi ndings presage 
another renaissance in the study of UHP granulite facies lower-
crustal basement and ophiolites and in our understanding of the 
geodynamics of continental subduction and mantle cycling. 

UHP MINERALS IN NEW TECTONIC ENVIRONMENTS
The discovery of minerals and microstructures indicative of ultrahigh-
pressure (UHP) metamorphism in a variety of new tectonic environ-
ments is providing insight into the fate of subducted crust. Two of the 
most recent fi ndings of UHP minerals in ultrahigh temperature (UHT) 
granulites and in chromitites associated with ophiolite complexes are 
highlighted below. Also presented is a schematic cross section of the 
outer shells of the Earth, showing the recycling of crustal materials in 
various tectonic regimes (FIG. 1). These fi ndings, together with many 
other well-documented occurrences of global UHP orogens, reveal that 
microdiamond, coesite, and other UHP phases are more common than 
previously thought in both Alpine- and Pacifi c-type orogens. 

Occurrences of microdiamond (+ coesite) as inclusions in kyanite, 
garnet, and zircon from felsic granulites in the northern Bohemian 
massif (e.g. Kotková et al. 2011) together with earlier fi ndings of micro-
diamond, coesite, and nano-size F-PbO2-structured TiO2 polymorph 
in pelitic gneisses of the central Erzgebirge suggest that a large part of 
the Bohemian massif crustal basement has been exhumed from mantle 
depths of >150 km and subjected to mid-crustal high-temperature (HT) 
to UHT granulite facies recrystallization. Moreover, the occurrence of 
diamond and coesite inclusions in garnet and kyanite of UHT felsic 
granulites from northwestern Africa are unusual as these rocks docu-
ment much higher P –T conditions (P > 4.3 GPa, T > 1100 °C), exhibit 
topotaxial overgrowths of diamond and coesite, lack palisade quartz 
around relict coesite, and have intergrowths of coesite and phengite 
possibly after K-cymrite (Ruiz-Cruz and Sanz de Galdeano 2012, 2013). 
The close association of mantle-derived garnet peridotites with such 
UHP–UHT granulites suggests that these peridotite bodies became inter-
digitated with deeply subducted continental crust under UHP condi-
tions rather than being tectonically emplaced at shallow crustal levels. 

More startling is the fact that UHP minerals have been discovered in 
podiform chromitites in ophiolite. For example, diamond, moissanite, 
possible coesite pseudomorphs after stishovite, Fe–Ti alloys, osbornite, 
cubic boron nitride, TiO2 II, and zabonite occur as nano- to micro-
scale inclusions in podiform chromitite from the Luobusa ophiolite, 
Tibet (Yang et al. 2007; Li et al. 2009; Dobrzhinetskaya et al. 2009). 
In situ microdiamond (± moissanite) inclusions in chromite grains also 

have been recognized in several ophiolitic massifs along the 1400 km 
long Yarlung–Zangbo suture between India and Asia, and in the Polar 
Urals (Yang and Robinson 2011). These UHP minerals and chromite 
containing exsolution lamellae of coesite + diopside (Yamamoto et 
al. 2009) suggest that the chromitites formed at P > 9–10 GPa and 
at depths of >250–300 km. Thin lamellae of pyroxene in chromite, 
similar to those from Tibet, have been documented in chromitites in the 
northern Oman ophiolite (Miura et al. 2012). The precursor phase most 
likely had a Ca-ferrite or Ca-titanite structure; both are high-pressure 
(HP) polymorphs of Cr-spinel at P > 12.5 and 20 GPa (at 2000 °C), 
respectively (Chen et al. 2003). Apparently, these UHP- mineral-bearing 
chromitites had a deep-seated evolution prior to extensional mantle 
upwelling and partial melting at shallow depths to form the overlying 
ophiolite complexes. 

Just where diamond in chromitites formed and whether or not diamond 
is involved in the recycling of oceanic/continental lithosphere rich 
in C and volatiles are open questions. The tectonic setting of these 
ophiolites refl ects mantle upwelling and recycling of subducted oceanic/
continental materials. The formation of diamond in the subcontinental 
lithospheric mantle is likely related to the oxidation of asthenosphere-
derived, methane-rich fl uids (Malkovets et al. 2007). The preservation 
of diamond is also controlled by the oxygen fugacity of the Earth’s 
mantle (Stagno et al. 2013). Some Brazilian diamonds have “organic” 
light carbon isotope values (I13C = –25‰ to –14‰) and contain micro- 
to nano-inclusions of “superdeep” mineral associations (Wirth et al. 
2007, 2009; Walter et al. 2011). These inclusions include phase egg 
[AlSi3(OH)] + stishovite, spinel + nepheline–kalsilite, wüstite + ferroperi-
clase, native iron + magnesite, F-PbO2-structured TiO2, wollastonite-II, 
cuspidine, tetragonal almandine–pyrope, and various halides derived 
from precursor phases stable at depths of >700 km. Walter et al. (2011) 
also identifi ed two new minerals (NAL, an aluminum silicate phase, and 
CF, a calcium ferrite phase) previously known only from experiments. 
Majorite-bearing diamonds from South African kimberlites also record 
“superdeep” mantle environments (Griffi n 2008). Eclogite-associated 
kimberlitic diamonds frequently have light I13C values (–22‰ to –6‰) 
and contain coesite and garnet inclusions with high I18O values (+6‰ 
to +16‰); the anticorrelation between C and O isotope ratios suggests 
a recycling origin (Schulze et al. 2003, 2013).

PERSPECTIVES
These new fi ndings should certainly renew interest in the exploration of 
UHP minerals and rocks in ophiolite and granulite terranes. The isotopic 
and inclusion characteristics of kimberlitic diamonds provide compel-
ling evidence for deep subduction of oceanic lithosphere, recycling of 
surface “organic” carbon into the lower mantle, and exhumation to 
the Earth’s surface, probably via a deep-mantle plume. Diamond and 
moissanite from chromitites associated with ophiolites in southern 
Tibet and the Polar Urals have extremely light I13C values, –29‰ to 
–18‰ (Yang and Robinson 2011), much lighter than most peridotite-
associated kimberlitic diamonds (–8‰ to –2‰). Although the origin of 
such light isotopic compositions in diamonds is the subject of debate, 
numerous studies of carbon isotope compositions of superdeep kimber-
litic diamonds from Brazil and Siberia suggest that they were derived 
from deep-mantle cycling of oceanic crust (e.g. Taylor and Anand 2004; 
Bulanova et al. 2010; Walter et al. 2011). Composite mineral inclusions 
in Brazilian diamonds indicate crystallization at lower-mantle condi-
tions; for example, inclusions of tetragonal almandine–pyrope were 
suggested to be a retrograde phase of Mg-perovskite stable at P > 30 GPa 
(Armstrong and Walter 2012). 
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Over the last decade, global mantle seismic 
tomography has been used to image slab 
stagnation; geochemical evidence of recycled 
material in the peridotitic mantle and the 
entire subduction / mantle plume cycle has 
been also documented. High-pressure experi-
ments have revealed that reidite (a high-pres-
sure polymorph of zircon) in a subducting slab 
is stable at P < 20.5 GPa and 1500 °C (Tange and 
Takahashi 2004). In fact, crust-derived, quartz-
bearing zircons in garnet peridotite xenoliths 
from the Trans–North China orogenic belt 
(Liu et al. 2010, xenocrystic zircons in mantle 
xenoliths in Namibia and China (Liati et al. 
2004; Zheng et al. 2006), and abundant, crust-
derived, recycled zircons in orogenic perido-
tites from the Urals (Bea et al. 2001) have 
been described. Podiform chromitites asso-
ciated with the ophiolites of Tibet, the Polar 
Urals, and Oman, mentioned above, contain 
rare supracrustal zircon, corundum, feldspar, 
garnet, kyanite, sillimanite, quartz, and rutile, 
and have much older U–Pb zircon ages than 
the formation ages of ophiolites (Robinson 
et al. 2012; Yamamoto et al. 2013). Paleozoic 
and Proterozoic zircons have been found in 
gabbroic rocks in the axial zone of the Mid-
Atlantic ridge (Pilot et al. 1998; Skolotnev et 
al. 2010). This direct evidence of crustal recy-
cling into the mantle should lead to another 
research renaissance, which will integrate the 
efforts of geophysicists, geochemists, mineral 
physicists, and geologists. 

The identification of rare UHP minerals (e.g. 
moissanite, K-cymrite, K-wadeite) requires 
state-of-the-art analytical tools. Systematic 
data for the ages of subduction, UHP meta-
morphism, and granulite facies overprinting, 
together with accurate P–T estimates, are essen-
tial for delineating the tectonic evolution of 
crustal basement and lithospheric chromitite. 
Raman identification of submicron-size inclu-
sions in domains of zircon from all litholo-
gies, secondary ion mass spectrometry (SIMS) 
analyses of in situ stable isotopes (O, C, and 
N), together with O isotope data from min-
erals formed at different stages are necessary to 
determine the amount of recycled supracrustal 
materials, the source of fluids, and the extent 
of fluid–rock interactions through subduction, 
mantle-plume ascent, and exhumation (e.g. 
Dobrzhinetskaya 2012; Schulze et al. 2013). 
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FIGURE 1 A schematic cross section of the Earth’s outer shells showing recycling of crustal materials in 
different tectonic regimes. The bold black arrows represent global pathways (to the mantle–core 

boundary and to the Earth’s surface) of continental materials. Label A is a general trajectory of subduction/
exhumation of UHP metamorphic rocks in a collision-type orogen. Label B represents UHP-mineral-bearing 
chromitites associated with ophiolite complexes; unusual chromitites with UHP minerals and/or crustal-derived 
minerals might have formed from recycled materials. Subduction erosion in Pacific-type orogens allows 
subduction of a significant volume of continental material into the transition zone (Maruyama et al. 2010). 
Label C is a kimberlite pipe in which diamondiferous material from the subcontinental lithospheric mantle as well 
as superdeep mantle material can be transported.
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