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ABSTRACT

Three high-grade tectonic blocks, including jadeite-bearing retrograded eclog-
ite, pumpellyite-rich retrograded eclogite, and clinopyroxene-bearing garnet-
amphibolite , are newly described in the jadeitite-bearing New Idria serpentinite 
body. Petrologic analyses reveal two contrasting peak metamorphic stages—eclogite-
facies metamorphism (M1

E) characterized by garnet + omphacite (~48 mol% jadeite) 
+ rutile ± epidote + quartz, and amphibolite-facies metamorphism (M1

A) character-
ized by garnet + hornblende + augite (~14 mol% jadeite) + rutile + quartz. Both peak 
metamorphic events are overprinted by very low-T blueschist-facies minerals (M2), 
which include glaucophane, lawsonite, pumpellyite, jadeitite (up to 94 mol% jadeite), 
chlorite, and titanite. Garnet-clinopyroxene geothermometry yields T = ~580–620 °C 
at P > 1.3 GPa for the M1

E stage and T = ~630–680 °C at P = ~0.8–1.0 GPa for the M1
A 

stage. The jadeite- and lawsonite-bearing phase equilibria constrain metamorphic 
conditions of P > 1.0 GPa at T = ~250–300 °C for the M2 stage that is probably syn-
chronous with the formation of nearby jadeitite within serpentinite. The presence of 
eclogite blocks suggests that the New Idria serpentinite diapir was initiated at mantle 
depths. The wide range of P-T conditions of tectonic blocks supports the idea that the 
New Idria serpentinite diapir rose from mantle depths and enclosed tectonic blocks at 
various mantle-crustal levels during diapiric upwelling and extrusion.

Keywords: serpentinite diaper, tectonic block, HP metamorphism, P-T path, Diablo 
Range.
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INTRODUCTION

Serpentinite diapirism has been documented in many present-
day forearc environments. For example, in the Izu-Bonin-Mariana  
interoceanic island arcs, numerous serpentinite seamounts are 
widely distributed (e.g., Fryer et al., 1995; Ishii et al., 1992; 
Kamimura et al., 2002; Miura et al., 2004; Seno, 2005). Some 
of these contain exotic blocks of blueschist- and eclogite-facies 
rock (Maekawa et al., 1993; Ueda et al., 2004), which suggests 
that serpentinite diapiric ascent may play a signifi cant role in the 
exhumation of high-pressure metamorphic rocks, consistent with 
the common association of high-pressure blocks with serpentinite 
in many blueschist terranes. The on-land analogue of such active 

serpentinite diapirs has long been recognized in the New Idria ser-
pentinite body of the California Coast Ranges (Coleman, 1961, 
1986, 1996). The New Idria serpentinite contains jadeitite, and its 
exposure since at least middle Miocene time is indicated by clas-
tic serpentinite debris in the Big Blue Formation (Coleman, 1961; 
Casey and Dickinson, 1976; Bate, 1985). The record of serpenti-
nite erosion is verifi ed by the presence of detrital serpentinites in 
Pliocene-Quaternary sediments. The presence of active landslides 
on the fl anks of the New Idria serpentinite body (Cowan, 1979) and 
the deposition of detrital serpentinite in terrace deposits as young 
as 500 yr B.P. (Atwater et al., 1989) are also strong evidence that 
the New Idria serpentinite continues to rise. Moreover, recent fi s-
sion track thermochronology from the Great Valley Group forearc 
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Figure 1 (on this and following page). Geologic map of the New Idria serpentinite body and surrounding area in the southern Diablo Range. The 
serpentinite body occupies the crest of the Coalinga antiform, and the high-angle normal faults surrounding it mark the exhumed trace of the 
Coast Range fault. B–B′ is modifi ed after Namson et al. (1989). Note that cross sections do not match exactly the map since they are compiled 
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sediments suggested the rapid rise of the New Idria serpentinite 
diapir as a heat source (T > ~110 °C) to anneal apatite fi ssion tracks 
at ca. 14 Ma (Vermeesch et al., 2006). Although blocks of low-
grade blueschist, jadeitite, greenstone and many other metasomatic 
rocks have been previously reported in the New Idria serpentinite 
body (e.g., Coleman, 1961, 1986; Van Baalen, 2004), we recently 
discovered high-grade blocks of eclogites and garnet-amphibolite 
near the jadeitite locality of Coleman (1961).

In this paper, we describe detailed petrologic and  mineralogic 
characteristics of these high-grade blocks, and constrain the ini-
tiation of the New Idria serpentinite diapir. We also document 
possible origin of the New Idria serpentinite based on available 
petrotectonic data on ophiolitic rocks in the California conti nental 
margin and geophysical data for modern subduction zones. This 
is the fi rst comprehensive petrologic report dealing with mafi c 
tectonic blocks from one of the largest serpentinite bodies in the 
California Coast Ranges.

Mineral abbreviations are after Kretz (1983); we also use 
sodic amphibole (Na-amp), phengite (Phe), and aegirine (Ae) 
throughout this paper. The term “hornblende” (Hbl) is used to 
described Ca-amphibole with dominantly tschermakitic and 
edenitic composition. Abbreviations for element-sites are: [6]—

octahedral M2-sites; [B]—decahedral B-sites of amphibole; 
[A]—10-coordinated A-site of amphibole.

GEOLOGIC SETTING

The New Idria serpentinite body (23 × 8 km) forms the core 
of the Coalinga antiform along the crest of the Diablo Range 
between the San Andreas fault on the west and the San Joaquin 
Valley on the east (Fig. 1). Tertiary and Mesozoic marine sedi-
mentary rocks that surround the dome are folded into a series of 
anticlines and synclines that trend N70°W, oblique to the north-
west trend of the San Andreas fault. These fl anking sediments 
and the serpentinite body together comprise an asymmetric 
actively growing anticline that is the northern extension of the 
Coalinga anticline (Dibblee, 1972; Nilsen, 1984; Namson et al., 
1989; Dickinson, 2002). The New Idria serpentinite is in contact 
with the Franciscan Complex and Upper Cretaceous Panoche and 
Moreno Formations of the Great Valley Group (Coleman, 1986; 
Vermeesch et al., 2006). The contact is marked by high-angle 
faults and shear zones that indicate upward differential move-
ment of the New Idria serpentinite body (Coleman, 1980, 1996). 
The northeastern contact along the body has been called a thrust, 
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as the subjacent Mesozoic and Tertiary sediments are overturned 
to the east by emplacement of the expanding serpentinite pro-
trusion (Coleman, 1961; Eckel and Myers, 1946). The vertical 
displacement between the trough of the syncline and the patch 
of sediments on the crest of the serpentinite is 853 m, yielding an 
uplift rate of ~4 mm/yr during the Pliocene (Coleman, 1996).

The New Idria serpentinite body consists mainly of chryso-
tile-lizardite serpentinite and minor antigorite serpentinite. Only a 
few serpentinite samples preserve relict primary minerals includ-
ing olivine (Fo

91
), orthopyroxene (2.1–2.3 wt% Al

2
O

3
), clinopy-

roxene (1.6–2.2 wt% Al
2
O

3
), and chromian spinel (Cr/(Cr + Al) 

atomic ratio = 0.52–0.54). Compositions of these relict minerals 
suggest that the serpentinite was a moderately depleted harzbur-
gite (Dick and Bullen, 1984; Arai, 1994) resembling some of 
the less serpentinized peridotites of the California Coast Ranges 
(Loney et al., 1971; Huot and Maury, 2002). A small syenite plug 
intruded the southern part of the New Idria serpentinite body dur-
ing the middle Miocene (ca. 12 Ma), producing hydrothermal 
alteration in restricted zones in the serpentinite and its tectonic 
inclusions (Coleman, 1961; Johnson and O’Neil, 1984; Laurs et 
al., 1997; Obradovich et al., 2000; Van Baalen, 2004) (Fig. 2). 
This hydrothermal alteration produced an unique suite of tita-
nium-rich minerals including the famous California State gem, 
benitoite, that has been dated at 12 Ma (e.g., Laurs et al., 1997; 
Obradovich et al., 2000).

The New Idria serpentinite contains numerous tectonic 
blocks of greenstone and low-grade blueschist up to 1500 m in 
length, and others less than a meter in diameter (Coleman, 1961, 
1980) (Fig. 2). The blocks have a random distribution within 
the serpentinite body, and their internal metamorphic fabrics are 
disparate from block to block. The blocks are characteristically 
surrounded by sheared antigorite serpentinite in contrast to the 
main body that consists of chrysotile-lizardite (Fig. 2). Along 
Clear Creek, Coleman (1961) found blocks of monomineralic 
jadeitite rocks and jadeitite veins cutting low-grade blueschist 
blocks. The investigated high-grade blocks were found as river 
fl oat near the jadeitite locality in Clear Creek (Fig. 2). As the 
headwaters for the Clear Creek drainage lie entirely within the 
serpentinite, the high-grade blocks must have come out of the 
serpentinite.

PETROGRAPHY

The high-grade blocks are extensively retrograded, but 
primary eclogite- or garnet-amphibolite mineral assemblages 
are locally preserved. Three rock types are recognized from 
the relict assemblages: (1) jadeite-bearing retrograded eclogite 
(JEC), (2) pumpellyite-rich retrograded eclogite (PEC), and (3) 
 clinopyroxene-bearing garnet-amphibolite (CGA). Their litho-
logic and petrographic features are described below:
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Jadeite-Bearing Retrograded Eclogite (JEC)

The JEC is a subrounded boulder (~30 cm in size). Chlori-
tized garnet and pale-greenish omphacite-rich matrix are visible 
on the well-polished surface. Thin-section observation indicates 
that the specimen is a coarse-grained, massive metabasite char-
acterized by unusually abundant chloritized garnet (up to 77 
vol%) (Fig. 3A). Compositional banding (2–4 cm in thickness) 
is defi ned by varying amounts of garnet together with ompha-
cite. Rare glaucophane-rich hydrous veins (~5 mm wide) cross-
cut the banding. Accessory minerals include sodic amphibole, 
jadeite, lawsonite, pumpellyite, chlorite, titanite, phengite, 
rutile, and apatite. Garnet is subhedral to anhedral (0.5–3 mm in 
size) and intensely chloritized along internal cracks (Fig. 3A). 
The chloritized garnets contain mineral inclusions of rutile, 
omphacite, and rare quartz and clinozoisite. Some internal 
fractures of garnet are fi lled by lawsonite. Omphacite occurs as 
aggregates of fi ne-grained crystals (less than 0.1 mm) in contact 
with garnet (Fig. 3B). Omphacite is replaced partly by retro-
grade jadeite, pumpellyite, and chlorite (Figs. 3C and 3D). In 
some cases, jadeite-poor clinopyroxene occurs as patches or as 
lamellae in omphacite. Retrograde jadeite occurs as irregularly 
shaped crystals associated with pumpellyite and chlorite and 
fi lls grain boundaries of omphacites (Fig. 3C); some retrograde 
jadeite contains mineral inclusions of pumpellyite. Titanite 
replacing rutile is ubiquitous in the matrix and contains mineral 
inclusions of sodic amphibole, chlorite, and pumpellyite. The 
mineral assemblage Grt + Omp ± Czo + Rt + Qtz is interpreted 
as the primary mineral assemblage representing a peak  eclogite-
facies metamorphism, whereas the assemblage Na-amp + Jd + 
Pmp + Lws + Chl + Ttn ± Phe formed during blueschist-facies 
retrogression.

Pumpellyite-Rich Retrograded Eclogite (PEC)

The PEC is a well-polished, dark-greenish rounded boulder 
(~60 cm in size); garnet pseudomorphs are barely visible by hand 
lens. The PEC is a highly retrograded, fi ne-grained eclogite. It 
consists mainly of omphacite (46%), chloritized garnet (19%), 
chlorite (20%), pumpellyite (11%), minor amounts of titanite, 
and rare lawsonite. Chloritized garnet preserves its euhedral shape 
(0.5–1.2 mm in size) (Fig. 3E). Internal fractures of garnet are 
fi lled by lawsonite. Clinozoisite and apatite are present as trace 
tiny inclusions in garnet. Omphacite occurs as radial aggregates 
of fi ne-grained crystals. It commonly contains irregularly shaped 
patches or lamellae of diopside (Fig. 3F). Omphacite aggregates 
are replaced by chlorite and pumpellyite. Pumpellyite occurs as 
randomly oriented colorless prisms (up to 2 mm in length) in 
the matrix (Fig. 3G), and as green fi brous aggregates (<0.5 mm) 
included in chloritized garnet. Rutile is rare in the core of titanite 
(Fig. 3H). The mineral assemblage Grt + Omp + Rt ± Czo + Qtz 
characterizes the peak eclogite-facies metamorphism, whereas 
the assemblage Pmp + Lws + Chl + Ttn refl ects the blueschist-
facies overprinting.

Clinopyroxene-Bearing Garnet-Amphibolite (CGA)

The CGA is a dark-colored gneissic cobble (~20 cm in 
size). The CGA consists mainly of hornblende, chloritized gar-
net, and diopsidic clinopyroxene with minor titanite, chlorite, 
sodic amphibole, pumpellyite, quartz, and rare jadeite and rutile. 
Apatite and rare tourmaline are accessories. A weak foliation 
is defi ned by oriented granonematoblastic hornblende grains. 
Hornblende (<1.5 mm in length) shows pale-brownish pleo-
chroic color.  Bluish glaucophane overgrows the margins and fi lls 
internal cracks of the hornblende. Subhedral to euhedral garnet, 
up to 1 mm diameter, contains inclusions of clinopyroxene and 
rare quartz and is moderately chloritized. Some fi ner garnets 
(<0.5 mm in size) are included in hornblende and clino pyroxene 
(Fig. 3I). Clino pyroxene occurs as granoblasts (<1.5 mm in 
length) and is partly replaced by pumpellyite, chlorite, and rare 
jadeite along cleavages. Secondary titanite associated with chlo-
rite is ubiquitous in the matrix; rare rutile was found in titanite 
cores. The metamorphic peak is characterized by a primary 
matrix assemblage of Grt + Hbl + Cpx + Qtz + Rt; the secondary 
mineral assemblage of Gln + Pmp + Chl ± Jd + Ttn represents a 
 blueschist-facies retrogression.

MINERAL CHEMISTRY

Electron microprobe analysis was carried out with a JEOL 
JXA-8900R at Okayama University of Science. Quantitative 
analyses of both peak and retrograde minerals were performed 
with 15 kV accelerating voltage, 12 nA beam current, and 3–
5 µm beam size. Natural and synthetic silicates and oxides were 
used as standards for calibration. The CITZAF method (Arm-
strong, 1988) was employed for matrix corrections. Representa-
tive analyses are listed in Tables 1, 2, and 3.

Garnet

Compositions of garnets of each rock type are plotted 
in the three binary diagrams XMg-alm, XMg-sps, and XMg-grs, 
where XMg = Mg/(Mg + Fe), alm = 100 × Fe/(Fe + Mn + 
Mg + Ca), sps = 100 × Mn/(Fe + Mn + Mg + Ca), and grs = 100 × 
Ca/(Fe + Mn + Mg + Ca) (Fig. 4). Garnets in the JEC are rich 
in almandine (alm) component with moderate grossular (grs) 
and pyrope (prp) and very low spessartine (sps) (alm

50–62
grs

22–32

prp
12–17

sps
<3

); XMg ranges from 0.17 to 0.25. These garnets 
show prograde chemical zoning: XMg increases from core to 
rim; grossular component slightly increases rimward. Garnets 
in the PEC have compositions of alm

48–57
grs

29–36
prp

9–17
sps

1–8
; 

grossular and spessartine components are slightly higher than 
in garnets from the JEC. The XMg increases rimward (XMg = 
0.15–0.26), indicating prograde growth. Garnets in the CGA 
are characterized by markedly higher grossular compositions 
(alm

45–50
grs

34–41
prp

8–15
sps

1–7
) than those from other rock types. 

As in the other two samples, the XMg increases from core to rim 
(XMg = 0.14–0.25).
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Figure 3. Microtextures of the investigated high-grade rocks in the New Idria serpentinite body. (A) Photomicrograph showing garnet-rich matrix 
of the JEC (cross-polarized light). (B) Porphyroblastic garnets (Grt) of the JEC (cross-polarized light). (C) X-ray image of Al (Kα) of retrograde 
minerals of the JEC. Garnets are fractured and matrix omphacites are replaced by chlorite (Chl), jadeite (Jd), lawsonite (Lws), pumpellyite 
(Pmp), and glaucophane (Gln). (D) X-ray image of Na (Kα) of matrix omphacite of the JEC. Omphacite is partly replaced by various sec ondary 
minerals including jadeite. (E) Chloritized porphyroblastic garnets of the PEC (cross-polarized light). (F) X-ray image of Ca (Kα) of matrix 
omphacite of the PEC. Omphacite contains irregularly shaped patches and lamellae of diopside. (G) Prismatic pumpellyite of the PEC (plane-
polarized light). (H) Rutile preserved in the titanite cores of the PEC (plane-polarized light). (I) Photomicrograph showing granonematoblastic 
diopsidic pyroxene (Cpx) of the CGA. Clinopyroxene contains garnet and hornblende inclusions.

 on January 12, 2011specialpapers.gsapubs.orgDownloaded from 

http://specialpapers.gsapubs.org/


TABLE 1. REPRESENTATIVE ELECTRON-MICROPROBE ANALYSES OF ROCK-FORMING MINERALS 
IN THE JEC

Garnet Omphacite Ep Jd Na-amp Lws Pmp Phe
core rim M M2 M2 M2 M2 M2

Inc Exs
SiO2 38.31 38.26 55.20 55.31 53.82 37.94 58.70 56.49 38.24 37.10 52.35
TiO2 0.08 0.09 0.10 0.02 0.00 0.45 0.09 0.03 0.06 0.20 0.05
Al2O3 21.01 21.18 7.90 8.33 2.21 26.03 21.97 10.67 31.44 24.73 25.28
Cr2O3 0.03 0.12 0.25 0.06 0.01 0.12 0.09 0.10 0.05 0.09 0.11
FeO* 27.49 23.74 9.67 8.36 11.31 9.11 3.06 14.22 0.56 3.93 3.74
MnO 0.78 0.75 0.23 0.12 0.22 0.00 0.02 0.09 0.00 0.29 0.05
MgO 3.39 4.21 6.60 6.91 9.65 0.12 0.35 7.32 0.00 2.99 3.41
CaO 9.34 11.04 12.78 13.50 19.91 23.44 0.55 0.76 17.35 22.51 0.00
Na2O 0.01 0.04 7.09 7.02 2.92 0.03 15.22 7.21 0.00 0.19 0.16
K2O 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.03 0.01 0.00 9.51
Total 100.44 99.43 99.82 99.64 100.05 97.24 100.05 96.92 87.71 92.02 94.64

O = 12 12 6 6 6 12.5 6 23 8 24.5 11
Si 3.012 3.003 2.001 1.999 2.004 2.996 1.999 7.978 2.021 6.035 3.510
Ti 0.005 0.006 0.003 0.001 0.000 0.027 0.002 0.004 0.003 0.025 0.003
Al 1.947 1.959 0.338 0.355 0.097 2.422 0.882 1.776 1.958 4.741 1.997
Cr 0.002 0.008 0.007 0.002 0.000 0.008 0.002 0.011 0.002 0.011 0.006
Fe3+ 0.146 0.137 0.106 0.542 0.087 0.041 0.020
Fe2+ 1.807 1.558 0.147 0.116 0.246 0.000 1.638 0.535 0.210
Mn 0.052 0.050 0.007 0.004 0.007 0.000 0.001 0.011 0.000 0.040 0.003
Mg 0.397 0.493 0.357 0.372 0.535 0.014 0.018 1.541 0.000 0.725 0.340
Ca 0.787 0.928 0.496 0.523 0.794 1.983 0.020 0.115 0.982 3.923 0.000
Na 0.001 0.005 0.498 0.492 0.211 0.004 1.005 1.974 0.000 0.059 0.020
K 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.001 0.000 0.813
Total 8.010 8.010 4.000 4.000 4.000 7.994 4.016 15.094 4.987 16.094 6.903

XMg 0.18 0.24 0.71 0.76 0.69 1.00 0.48 0.58 0.62
Note: FeO* = total Fe as FeO. XMg = Mg/(Mg + Fe2+). Ep—Epidote; Exs—exsolution; Inc—inclusion in 

garnet; Jd—Jadeite; JEC—jadeite-bearing retrograded eclogite; Lws—Lawsonite; M1—M1
E

1
E

; M2—blueschist-
facies overprinting; Na-amp—Na-amphibole; Phe—Phengite; Pmp—Pumpellyite. 

TABLE 2. REPRESENTATIVE ELECTRON-MICROPROBE ANALYSES OF ROCK-
FORMING MINERALS IN THE PEC

Garnet Omphacite Ep Pumpellyite Lws
core rim Omp Omp Di M1 M2 M2 M2

w/Exs Exs P F
SiO2 38.49 38.48 55.93 56.48 53.02 40.04 38.73 37.76 37.48
TiO2 0.14 0.08 0.18 0.08 0.01 0.12 0.00 0.09 0.03
Al2O3 21.66 21.81 9.70 10.65 0.47 27.84 26.59 24.09 25.13
Cr2O3 0.00 0.07 0.02 0.05 0.00 0.00 0.03 0.02 0.11
FeO* 25.38 22.56 6.57 5.20 12.36 5.39 2.55 6.20 2.85
MnO 0.97 0.66 0.05 0.00 0.06 0.26 0.29 0.00 0.12
MgO 2.80 4.27 6.90 7.01 11.08 0.22 3.07 1.15 3.25
CaO 11.28 11.92 13.97 12.65 22.42 23.64 22.25 22.06 22.66
Na2O 0.04 0.03 6.99 7.69 0.65 0.05 0.30 0.17 0.15
K2O 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00
Total 100.77 99.89 100.31 99.82 100.06 97.56 93.81 91.55 91.78

O = 12 12 6 6 6 12.5 24.5 24.5 24.5
Si 3.002 2.992 2.000 2.010 2.005 3.087 6.099 6.209 2.036
Ti 0.008 0.005 0.005 0.002 0.000 0.007 0.000 0.011 0.006
Al 1.991 1.999 0.409 0.447 0.021 2.529 4.934 4.669 1.884
Cr 0.000 0.004 0.000 0.001 0.000 0.000 0.004 0.003 0.000
Fe3+ 0.065 0.058 0.016 0.347 0.037
Fe2+ 1.656 1.467 0.131 0.097 0.375 0.336 0.853
Mn 0.064 0.044 0.002 0.000 0.002 0.017 0.039 0.000 0.001
Mg 0.325 0.495 0.368 0.372 0.625 0.025 0.719 0.282 0.021
Ca 0.943 0.993 0.535 0.482 0.908 1.952 3.754 3.888 1.012
Na 0.006 0.005 0.485 0.531 0.048 0.007 0.093 0.054 0.004
K 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.004 0.000
Total 7.997 8.004 4.000 4.000 4.000 7.972 15.980 15.972 5.000

XMg 0.16 0.25 0.74 0.79 0.62 0.68 0.25
Note: FeO* = total Fe as FeO. XMg = Mg/(Mg + Fe2+). Inc—inclusion in garnet; Ep—

Epidote; Exs—exsolution (w/Exs—host); F—fibrous; Jd—Jadeite; Lws—Lawsonite; 
M1—M1

E; M2—blueschist-facies overprinting; Na-amp—Na-amphibole; P—prismatic; 
PEC—pumpellyite-rich retrograded eclogite; Phe—Phengite; Pmp—Pumpellyite. 
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Clinopyroxenes

Clinopyroxene analyses are plotted in the jd–aug (di + hd)–
ae ternary diagram (Fig. 5). The Fe2+/Fe3+ ratio and end-member 
components of sodic pyroxene were calculated by an algorithm 
suggested by Harlow (1999). Analyzed clinopyroxenes are nearly 
free of Ca-Tschermak component except for those from the CGA. 
Omphacites in the JEC have compositions of jd

27–38
aug

48–58
ae

3–18
, 

with XMg = 0.57–0.76. Exsolution lamellae in the JEC ompha-
cite are jd

10–18
aug

67–80
ae

10–15
, with XMg = 0.59–0.71. Retrograde 

 jadeites in the JEC are nearly binary jadeite-aegirine composi-
tions of jd

70–94
aug

1–6
ae

3–24
; the jd component is comparable to 

 jadeitite in monomineralic jadeitite in the New Idria serpentinite 
and is remarkably higher than those from the New Idria  lawsonite-
blueschist  (Fig. 5). Omphacites in the PEC have compositions of 
jd

38–47
aug

45–55
ae

2–11
, XMg = 0.70–0.79, and show a wide composi-

tional gap between their host and diopside lamellae (jd
1–5

aug
87–96

ae
0–6

; XMg = 0.61–0.67). Diopsidic clinopyroxenes in the CGA 
contains up to 4 mol% Ca-Tschermak component and is charac-
terized by low-jd and -ae components (jd

4–13
aug

83–89
ae

0–6
; XMg = 

0.75–0.85). Retrograde jadeites replacing primary clinopyroxenes 
have compositions of jd

60–65
aug

14–19
ae

18–21
, with XMg > 0.87.

Amphiboles

The structural formulae of amphiboles are calculated based 
on O = 23; the Fe2+/Fe3+ ratio was estimated based on total  cations 
= 13 excluding Ca, Na, and K (Leake et al., 1997). Analyzed 

amphiboles are plotted in two binary diagrams, [4]Al-[B]Na and 
[4]Al-([A]Na + [A]K) (Fig. 6). All retrograde sodic amphiboles in 
the JEC and CGA are glaucophane or ferroglaucophane with XMg 
= 0.37–0.54 and Fe3+/(Fe3+ + [6]Al) < 0.13. Primary hornblendes in 
the CGA have edenitic to tschermakitic compositions with [B]Na 
= 0.12–0.31, [A]Na + [A]K = 0.41–0.61, and XMg = 0.66–0.72; they 
contain up to 13 wt% Al

2
O

3
, 2.5 wt% Na

2
O, and 0.68 wt% TiO

2
.

Other Minerals

Epidote inclusions in garnets of the JEC and PEC are charac-
terized by relatively low Fe3+/(Fe3+ + Al) ratios (0.11–0.18). Law-
sonites in the JEC and PEC contain 0.4–1.4 wt% Fe

2
O

3
. Pumpel-

lyites in the JEC are characterized by high Al/(Al + Mg + Fe) 
ratio (0.73–0.83); the XMg of prismatic pumpellyite (0.56–0.73) 

TABLE 3. REPRESENTATIVE ELECTRON-MICROPROBE ANALYSES OF 
ROCK-FORMING MINERALS IN THE CGA

Garnet Clinopyroxene Hbl Jd Na-amp Pmp
core rim M1

A M1
A M1

A M2 M2 M2

Inc
SiO2 38.42 38.62 53.12 53.58 45.63 57.14 56.55 37.48
TiO2 0.14 0.10 0.06 0.12 0.67 0.42 0.12 0.03
Al2O3 21.47 21.50 3.11 2.94 12.51 15.38 9.54 25.13
Cr2O3 0.00 0.02 0.06 0.00 0.15 0.08 0.04 0.11
FeO* 22.08 22.66 6.97 7.21 11.47 7.33 13.64 2.85
MnO 2.61 0.44 0.00 0.00 0.02 0.08 0.25 0.12
MgO 2.35 3.88 12.73 12.70 12.59 2.40 7.82 3.25
CaO 13.06 12.49 22.30 22.56 11.46 3.74 0.59 22.66
Na2O 0.03 0.01 1.40 1.17 2.63 12.86 8.14 0.15
K2O 0.00 0.00 0.01 0.00 0.24 0.00 0.06 0.00
Total 100.16 99.71 99.77 100.30 97.39 99.43 96.75 91.78

O = 12 12 6 6 23 6 23 24.5
Si 3.009 3.011 1.962 1.974 6.636 1.999 8.027 6.069
Ti 0.008 0.006 0.002 0.003 0.073 0.011 0.013 0.003
Al 1.982 1.976 0.135 0.128 2.145 0.634 1.597 4.796
Cr 0.000 0.001 0.002 0.000 0.018 0.002 0.005 0.014
Fe3+ 0.037 0.001 0.063 0.214 0.000
Fe2+ 1.446 1.477 0.179 0.221 1.332 0.000 1.619 0.386
Mn 0.173 0.029 0.000 0.000 0.003 0.002 0.030 0.017
Mg 0.274 0.451 0.701 0.698 2.730 0.125 1.654 0.784
Ca 1.096 1.043 0.882 0.891 1.786 0.140 0.089 3.931
Na 0.005 0.002 0.100 0.084 0.740 0.872 2.240 0.046
K 0.000 0.000 0.001 0.000 0.044 0.000 0.011 0.000
Total 7.994 7.996 4.000 4.000 15.570 4.001 15.285 16.046

XMg 0.16 0.23 0.80 0.76 0.67 1.00 0.51 0.67
Note: FeO* = total Fe as FeO. XMg = Mg/(Mg + Fe2+). CGA—clinopyroxene-

bearing garnet-amphibolite; Hbl—Hornblende; M1
A—amphibolite-facies 

metamorphism; M2—blueschist-facies overprinting; Inc—inclusion in garnet. 
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is higher than that of fi brous pumpellyite (0.18–0.43). Pumpel-
lyites in the CGA are Al-rich (Al/(Al + Mg + Fe) = 0.80–0.81); 
XMg ranges from 0.61 to 0.68. Phengites in the JEC are Si-rich 
(3.4–3.5 Si p.f.u.); XMg ranges from 0.58 to 0.64. Titanites con-
tain 1.1–1.8 wt% Al

2
O

3
 (JEC), 0.8–1.9 wt% Al

2
O

3
 (PEC), and 

1.3–1.6 wt% Al
2
O

3
 (CGA).

P-T CONDITIONS OF METAMORPHISM

Based on observed petrographic features, composi-
tions, and mineral parageneses, at least two different stages 
of metamorphic crystallization—peak eclogite-facies (M

1
E) 

or  amphibolite-facies (M
1
A) and blueschist-facies overprinting 

(M
2
)—are identifi ed in each of the blocks. Mineral parageneses 

for different metamorphic stages of these rock types are sum-
marized in Figure 7. The JEC and PEC record eclogite-facies 
metamorphism (M

1
E), whereas the CGA preserves amphibolite-

facies metamorphism (M
1
A). Characteristic features for each 

stage are described below:
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Eclogite-Facies Metamorphism (M1
E) in the JEC and PEC

The M
1
E mineral assemblage, Grt + Omp + Rt ± Czo + Qtz, 

in the JEC and PEC represents prograde eclogite-facies meta-
morphism. Prograde-zoned garnet with XMg increasing con-
tinuously from cores implies progressive increase in tempera-
ture during garnet growth. The thermal and probably the peak 
baric condition was achieved at the highest-XMg portion of the 
garnet rims. The Jd + Qtz sliding equilibrium (Holland, 1983) 
and Grt-Cpx thermometry (Krogh-Ravna, 2000) of the matrix 
omphacite (less exsolved part) and adjacent garnet rims of both 
JEC and PEC yield T = ~580–650 °C at a minimum P = 1.3 GPa 
for the  eclogite-facies stage (Fig. 8).

Amphibolite-Facies Metamorphism (M1
A) in the CGA

Amphibolite-facies metamorphism (M
1
A) produced the 

assemblage Grt + Cpx + Hbl + Rt + Qtz. The absence of ompha-
cite and epidote, and the presence of diopsidic pyroxene (jd

~13
) 

and brown hornblende, in the CGA suggest that M
1
A represents 

higher-T, lower-P conditions than the M
1
E assemblages in the 

JEC and PEC. The Jd + Qtz sliding equilibrium (Holland, 
1983) and Grt-Cpx thermometry (Krogh-Ravna, 2000) of clino-
pyroxene and adjacent garnet give a P = 0.8–1.0 GPa at T = 
~630–680 °C for the amphibolite-facies stage (Fig. 8). More-
over, the relatively high Al (up to 13 wt% Al

2
O

3
) and Ti (up 

to 0.7 wt% TiO
2
) and moderate Na (up to 2.5 wt%) contents 

of hornblende, combined with the presence of rutile instead of 
titanite and ilmenite, further support these P-T estimates (Ernst 
and Liu, 1998; Liu et al., 1996).

Blueschist-Facies Overprinting (M2)

The M
2
 stage is characterized by blueschist-facies minerals 

that include sodic amphibole, jadeite, chlorite, pumpellyite, law-
sonite, and titanite. The breakdown of rutile is critical to defi ning 
this later blueschist-facies recrystallization. The textural relations 
of these minerals suggest signifi cant hydration of primary phases 
during M

2
 metamorphism. M

2
 minerals of all three rock types are 

interpreted as partial assemblages of Na-amp + Jd (Jd
~94

) + Pmp 
+ Lws + Chl + Ttn ± Phe (3.5 Si p.f.u.). This jadeite-bearing min-
eral assemblage is similar to those of common Franciscan low-
grade blueschists and metagraywackes (e.g., Ernst, 1971; Banno 
et al., 2000), in particular the pumpellyite-zone  metabasites in 
the Cazadero area, except for the lack of albite (e.g., Maruyama 
and Liou, 1987, 1988). Maruyama and Liou (1988) suggested a 
temperature range for pumpellyite-zone metabasites of T = 200–
290 °C. The absence of albite suggests that M

2
 minerals crystal-

lized close to or within the Jd + Qtz stability fi eld (P > 1.0 GPa) 
(Fig. 8). As described above, omphacites of the JEC and PEC 
characteristically contain lamellae of diopsidic pyroxene. Such 
omphacite-diopsidic (or augitic) pyroxene pairs are known to be 
stable at low-T blueschist-facies conditions; the compositional 
gap between omphacite and diopside becomes signifi cantly wider 

with decreasing temperature (e.g., Tsujimori, 1997; Tsujimori 
and Liou, 2004); hence, diopside lamellae may have exsolved 
from eclogitic omphacite during the M

2
 stage.

DISCUSSION

Petrologic Constraints on the Initiation of the 
New Idria Serpentinite Diapir

High-grade tectonic blocks within serpentinite- or shale-
matrix mélange are one of the most characteristic features of the 
Franciscan Complex (e.g., Coleman and Lanphere, 1971; Brown 
and Bradshaw, 1979; Cloos, 1986; Moore and Black, 1989; Waka-
bayashi, 1990, 1999; Oh and Liou, 1990; Krogh et al., 1994; 
 Anczkiewicz et al., 2004; Saha et al., 2005; Tsujimori et al., 2006a) 
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and Santa Catalina Island (Sorensen, 1988). As we described, New 
Idria eclogites (JEC and PEC) do not contain eclogite-facies pro-
grade amphibole (katophoritic/barroisitic or glaucophanic amphi-
boles), which occurs in most Franciscan eclogites (e.g., Krogh 
et al., 1994; Tsujimori et al., 2006a). The presence of abundant 
garnet (up to 77 vol%) in the JEC is also a unique characteris-
tic. Compared with well-studied Franciscan eclogites, the inferred 
temperature condition of the New Idria eclogites is signifi cantly 
higher than that of Franciscan eclogites (Fig. 8). Nevertheless, 
the presence of eclogite blocks in the New Idria serpentinite sug-
gests that the New Idria serpentinite diapir was initiated at mantle 
depths and enclosed eclogite-facies rocks during its upwelling and 
extrusion. A great depth of serpentinization is consistent with the 
occurrence of antigorite surrounding the tectonic blocks. Recently, 
Tsujimori et al. (2006a) reevaluated the peak P-T condition of 
Franciscan  eclogites of the Tiburon Peninsula as P = 2.2–2.5 GPa 
and T = 550–620 °C, and they suggested that the Franciscan high-
grade blocks were subducted to depths of ~75–80 km (Fig. 8). 
Although we could not constrain the maximum pressure of the New 
Idria eclogites, it can be speculated that the New Idria  eclogites 
also experienced such a great depth.

On the other hand, the New Idria garnet-amphibolite that 
recorded a lower-pressure and higher-temperature condition might 
have been incorporated into the New Idria serpentinite diapir at a 
depth near the crust-mantle boundary. Our preliminary K-Ar dat-
ing for hornblende separates (0.17 wt% K) from the investigated 
CGA sample yields 135 ± 7 Ma. This cooling age gives the mini-
mum age of the upwelling of the New Idria serpentinite diapir.

Many Franciscan high-grade blocks have experienced various 
degrees of blueschist-facies overprinting (e.g., Wakabayashi, 1990, 
1999; Krogh et al., 1994; Tsujimori et al., 2006a). Such a P-T path 
suggests that the rocks were “refrigerated” during exhumation 
inasmuch as no greenschist- or amphibolite-facies recrystalliza-
tion took place. However, the occurrence of jadeite in retrograde 
lawsonite-blueschist mineral assemblages has not been described 
previously. Among the reported New Idria high-grade blocks, the 
occurrences of retrograde jadeite (up to 94 mol% jd) and lawsonite 
imply very high-P/T conditions during blueschist-facies retrogres-
sion with infi ltration of fl uids (e.g., Tsujimori et al., 2005, 2006b). 
It is noteworthy that the jadeitite occurrence at Clear Creek is the 
only known locality in the California Coast Ranges. In general, 
jadeitite is closely associated with serpentinite, and its formation 
requires high-P/T conditions (P > 1.0 GPa at T = 200–400 °C) 
and infi ltration of Na- and Al-rich alkaline fl uid to the serpentinite 
(Harlow and Sorensen, 2005). Considering the jadeitite-bearing 
unusual retrograde mineral assemblage of the investigated blocks, 
the blueschist-facies recrystallization (M

2
) was probably synchro-

nous with the formation of jadeitite in the New Idria serpentinite.

Origin of the New Idria Serpentinite Diapir

The fi nding of high-grade blocks in the New Idria serpen-
tinite indicates a relatively deep origin of serpentinite. Based 
on available petrotectonic information of ophiolitic rocks in the 

California continental margin, and geophysical data for modern 
subduction zones, the following three possible protoliths of the 
New Idria serpentinite should be considered:

Model I: Underplated Abyssal Peridotite in 
Accretionary Complex

Coleman (2000) suggested that the New Idria serpentinite had 
been part of an abyssal peridotite within a fracture zone exposed 
on the leading edge of the Farallon plate as it entered the Francis-
can subduction trench mélange. Moderately depleted  harzburgite 
relics in the New Idria serpentinite are consistent with abys-
sal peridotite from fracture zones (e.g., Dick and Bullen, 1984). 
This model suggests that the partially serpentinized  fracture-zone 
perido tite was detached during subduction and became part of the 
Franciscan Complex that wedged under the Great Valley Group 
(Wentworth et al., 1984). The lighter and rheologically weaker 
serpentinite can move upward and laterally, lubricating the west-
directed blind thrust fault (e.g., Coleman, 1980).

Model II: Dismembered Mantle Section of the 
Coast Range Ophiolite

The basement of the Great Valley Group is the Coast Range 
ophiolite that formed as part of an intraoceanic arc system in the 
Late Jurassic (172–165 Ma) (e.g., Coleman, 1986, 2000; Hopson 
et al., 1981; Godfrey and Klemperer, 1998). The Coast Range 
ophiolite displays incomplete ophiolitic sequences and in some 
places is dismembered, forming serpentinite mélanges. The mag-
netic modeling of the New Idria serpentinite by Jachens et al. 
(1995) suggested a steeply east-dipping and detached magnetic 
body (serpentinite mélange) extending into the Franciscan Com-
plex. It is possible that the high-grade tectonic blocks have been 
tectonically emplaced into the Coast Range serpentinized mantle 
beneath the Great Valley Group.

Model III: Serpentinized Forearc Mantle Wedge
Recently, numerous geophysical transects were completed 

across the arc-trench system in Japan, Cascadia along western 
North America, and Izu-Bonin-Mariana image serpentinized 
mantle wedge along the hanging-wall boundary of the trench (e.g., 
Kamiya and Kobayashi, 2000; Kamimura et al., 2002;  Bostock 
et al., 2002; Zhang et al., 2004; Seno, 2005). These geophysical 
observations are consistent with an idea that low-viscous serpen-
tinite can produce a buoyancy-driven return fl ow necessary to 
exhume high-pressure rocks from subduction zones (e.g.,  Guillot 
et al., 2000). If we adopt this model, the New Idria serpentinite 
does not need to correlate with either abyssal peridotite or Coast 
Range ophiolite. Instead, it may represent part of serpentinized 
mantle wedge that extruded with blocks of high-pressure rocks.
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