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Abstract

Garnet clinopyroxenite at Rizhao occurs as a lens 100 x 225 m? within a serpentinized peridotite
body, in fault contact with felsic gneiss. Minor dunite also occurs within the same peridotite. The
clinopyroxenite consists of porphyroblastic Grt-bearing (type 1), megacrystic Grt-bearing (type 2),
porphyroblastic Cpx-bearing (type 3), and equigranular (type 4) garnet clinopyroxenite. Lamellae-
rich, coarse-grained Cpx occurs as inclusions in megacrystic Grt from type 2 clinopyroxenite, and as
porphyroblasts in a matrix of Cpx + Grt + Ilm from type 3 clinopyroxenite; these clinopyroxenes
contain abundant exsolution lamellae of Grt (Prp 4 oGrsgyAlm g 5,Sps;) + Ilm + Mag + Amp (Mg#:
0.88-0.98; Na,0: 0.5-3.3 wt%; K,0: 0.7-1.0 wt%; TiO,: 0.1-0.2 wt%). Megacrystic and porphyro-
blastic garnet (Prpys 4,Grs,, 4,<Alm 4 ,,Sps,) also occurs in a matrix of fine-grained Cpx + Grt + Ilm;
spinel (Mg#: 0.60—0.62) is present as inclusions in both porphyroblastic Grt and lamellae-rich Cpx.
Petrochemical data support a mantle origin involving crystallization of majoritic garnet. We propose
that the protolith of the Rizhao clinopyroxenite initially was a spinel clinopyroxenite, and was con-
vected to great depths (>450 km) to form a majoritic garnet that contains high CaO and considerable
amounts of FeO and TiO,. During later decompression, the majoritic garnet broke down to form
intergrowths of Cpx + Grt + [lm = Mag + Amp at T = 700-800°C, P < 3 GPa. It was then emplaced
into a subduction zone and experienced UHP metamorphism at 620-880°C, 3 GPa during Triassic
continental collision. Megacrystic/porphyroblastic garnet formed during this stage, and lamellae-
rich Cpx recrystallized to the matrix assemblage of Cpx + Grt + Ilm subsequently. The clinopyrox-
enite also experienced later retrogression during exhumation. Zircon U-Pb geochronology yields 215 +
2 Ma for the Rizhao garnet clinopyroxenite; occurrence of garnet and clinopyroxene inclusions in

zircon suggests that this age reflects the UHP metamorphism.

Introduction

GARNET PERIDOTITES are volumetrically small but
widespread in ultrahigh-pressure (UHP) metamor-
phic terranes in continental collision zones. Garnet
peridotites constitute an important petrological
component of UHP terranes and are regarded as a
window to upper mantle processes. They carry
important geodynamic implications for continental
collision, provide information on crust-mantle inter-
action and emplacement of mantle rocks into conti-
nental crust during continental collision, and are an
important source of information on the composition
and evolution of the local upper mantle. It has been
suggested that HP/UHP peridotites show different
initial tectonic settings, evolutionary histories, and

!Corresponding author; email: liou@pangea.stanford.edu

ZPresent address: The Pheasant Memorial Laboratory for
Geochemistry and Cosmochemistry, Institute for Study of the
Earth’s Interior, Okayama University, Misasa, Tottori 682-

0193, Japan.

emplacement mechanisms not only in different oro-
gens, but also within an individual terrane (Medaris,
1999; Brueckner and Medaris, 1998, 2000; Zhang
et al., 2000). Garnet peridotites from the Dabie-Sulu
terrane have been subdivided into Type A perido-
tites that are upper mantle slivers emplaced into the
subducted slab at mantle depths, and Type B perid-
otites that resided in the continental crust prior to
the subduction (Zhang et al., 2000). Both types were
subjected to UHP metamorphism during continental
collision. However, the initial tectonic setting and
evolution may vary from locality to locality, and it is
not straightforward to identify their origin because of
their complex metamorphic histories. For example,
the association with metagabbro and metagranite
favors a crustal intrusion origin for the Yangkou
ultramafic complex; petrochemical and O-isotope
data suggest a mantle origin (Zhang et al., 2005b).
These authors suggested that further age data are
needed to determine if the ultramafic complex had
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an identical protolith age as the mafic rocks, and
thus would give a better interpretation of its origin.

Geochronology in addition to petrological and
geochemical investigations is important. It will
answer important questions such as identifying the
protolith age of the garnet peridotites, and determin-
ing whether or not they were subjected to in situ
UHP metamorphism together with the surrounding
country rocks. Combined with petrochemistry, it will
also help to solve problems regarding the origin of
these garnet peridotites, the mechanism for their
emplacement into the subduction zone, and their
pressure-temperature-time paths. To date, only a
few SHRIMP zircon dates are available for garnet
peridotites (Rumble et al., 2002; Yang et al., 2003;
Zhang et al., 2005¢; Zhao et al., 2006) because of
the lack of zircons in these rocks. Most geochrono-
logical studies have been done by the Sm-Nd isoch-
ron method, which in some cases produces
meaningless ages because of isotopic disequilib-
rium (Yang and Jahn, 2000). In this paper, a new
SHRIMP U-Pb zircon age is determined in addition
to a detailed petrological study of the Rizhao perid-
otites from the Sulu terrane. Their metamorphic evo-
lution history, peak P-T conditions, and timing of
UHP metamorphism will also be discussed.

Geological Settings

The Qinling-Dabie-Sulu collision zone lies
between the Sino-Korean and Yangtze cratons. The
Sulu terrane is the eastern extension of the Qinling-
Dabie belt, and has been displaced northward by
the sinistral Tan-Lu fault. The Sulu UHP terrane is
bounded by the Yantai-Qingdao-Wulian (WQYF)
fault on the northwest and the Jiashan-Xiangshui
(JXF) fault on the south (Fig. 1A). The Sulu terrane
consists of two fault-bounded UHP and HP belts,
intruded by post-orogenic Cretaceous granite. The
UHP belt consists mainly of amphibolite- to granu-
lite-facies orthogneiss, paragneiss, amphibolite, and
minor marble. Meter- to kilometer-sized metamor-
phosed garnet peridotite and pyroxenite are wide-
spread, and occur sporadically as blocks and thin
layers in the gneiss (Zhang and Liou, 1998). Coesite-
bearing eclogite bodies also occur as lenses and
layers in the gneiss; the remainders are enclosed as
pods in ultramafic rocks and in marble. Coesite is
preserved as inclusions in zircon from many coun-
try-rock gneisses, confirming the in situ UHP meta-
morphism of the Sulu region (Ye et al., 2000; Liu et
al., 2002). The HP belt, southeast of the UHP belt,

consists mainly of quartz-mica schist, chloritoid-
kyanite-mica-quartz schist, marble, and rare blue-
schist (Zhang et al., 1995).

The Hujialing ultramafic complex in Rizhao in
the mid-south of the Sulu terrane is one of the larg-
est ultramafic bodies in the Dabie-Sulu UHP ter-
rane (Fig. 1B). The ultramafic body (0.2—1 x 2 km?
in size) is faulted against gneiss. It consists mainly
of serpentinized peridotite, containing discontinu-
ous lenses of garnet clinopyroxenite, garnet olivine
clinopyroxenite and dunite surrounded by serpen-
tinite at its margins (Fig. 1C). To the east of the stud-
ied body, clinopyroxenite, olivine-bearing
clinopyroxenite, serpentinite, and eclogite crop out;
inclusions of quartz pseudomorphs after coesite and
exsolved rutile needles are preserved in eclogitic
garnet (Zhang and Liou, 2003). Zhang and Liou
(2003) studied two representative garnet clinopyrox-
enites with exsolution microstructures from the
Hujialing peridotite body: (1) an ilmenite-rich
sample composed of coarse-grained clinopyroxene
containing abundant exsolutions of garnet +
ilmenite; and (2) a megacrystic garnet-bearing sam-
ple with exsolution-rich clinopyroxene inclusions in
garnet. They proposed that the parental phase of
exsolved garnet + ilmenite exsolutions and clinopy-
roxene host was either a homogeneous clinopyrox-
ene formed at near-solidus conditions (<1400°C, at
5 GPa) in the upper mantle, or a majoritic garnet
from the mantle transition zone (>450 km depth).
These two hypotheses remain to be tested.

Petrography

Garnet clinopyroxenite

Samples were collected from the largest garnet
pyroxenite lens (Fig. 1D), which is 100 x 225 m in
size, and nearby outcrops. This lens mainly consists
of porphyroblastic garnet clinopyroxenite with or
without olivine (type 1), megacrystic garet-bearing
clinopyroxenite (type 2), porphyroblastic clinopy-
roxene-bearing garnet clinopyroxenite (type 3), and
equigranular garnet clinopyroxenite (type 4). Most
garnet clinopyroxenites belong to type 1 or 4; only a
few contain coarse-grained clinopyroxenes with
abundant exsolution (type 3). One garnet clinopy-
roxenite layer in the central part of the lens contains
ellipsoidal to spherical garnet megacrysts up to 12
cm across (type 2).

Type 1. Porphyroblastic garnet-bearing clinopy-
roxenite (2G, 2F, 154, 23A). Type 1 clinopyroxenite

consists mainly of porphyroblastic garnet in a matrix



ZHAO ET AL.

734

"(€00g ‘nory pue Sueyz 661

“[® 19 Suryy 101Je parjipow) sojdwes PojRSTISIAUT Jo SITII[RIO] SUTMOYS UO0T}09s-sS010 parjifdwig “(] "Apoq orjewrenn Surferny] oy} Jo seNI[ROO] SUIMOYS BAIR ORYZIY 91 Jo dew

[0103[s [BI130[095) ) pUR ¢ "JUN JH () 9Y} Ul 9113099 pur 9nopLiad 19UIRS Jo SaNI[BDO0] SUIMOYS ‘BUIYY) [BI1USD-]1SBS ‘DURLI) NNgG 9y} Jo dew [eo130[093 payrdwig y T 9L

\

W 00 Apog
Buieliny
sstoup [ |
syunuadies 7]
ayung [ITT]
yjopliad ' (p) U uonoas-85010

ayuaxoskdouno ]

aubop3[&]

\
ssouo [T M./
ayunuadias 7] vee _//
auuxdd buneaq1o ebon p_@ a:.,w MMN/,&N M <
ayuxd) Bupesg-xdp diod [[© 9
\ysi 4z o2/
ayuxd) Bulieaq-po diod ENYN // 7 N
ayuxd) Jood-u [~ ] -7
a t0)
saipoq oyewenn [«#] fuo o] uojeld ozjBue A
Kiewsspend [ | suoeo

ssioup []
spueo [T

ZrA

a)bo|os Buueaq
ydiowopnasd-a)se0) ﬂ_

a)6ojoa a)1s80)
5001 OljeWERN H_
BaueLd) dHN EH_H_
aueLd} dH .
a)luaks 010zosay D
a)iuelb 010z0sajy I

12A02 DI1SSel | -}S0d _H_
uoneuedx3

wX 09

o dihy

€102 4200100 +0 8€:.T I [Lowiins | pinse] ] Ag pspeojumoq



Downloaded by [Tatsuki Tsujimori] at 17:38 04 October 2013

PETROLOGY AND U-Pb SHRIMP GEOCHRONOLOGY 735

FIG. 2. A-C. Photomicrographs showing a lamellae-rich clinopyroxene (Cpx) inclusion (A), a spinel (Spl) inclusion

(B), and a dolomite (Dol) inclusion (C) in porphyroblastic garnets (Grt) from the Rizhao garnet clinopyroxenite. All

photos are plane-polarized light. D. BSE image of zoned olivines from the Rizhao garnet clinopyroxenite.

of Grt, Cpx, Ilm, and Spl. Garnets occur as both
porphyroblasts (2 to 4 mm in size) and a fine-
grained matrix (<0.5 mm in size). Coarse-grained
garnets contain exsolution-rich Cpx (Fig. 2A) and
green Spl inclusions (Fig. 2B). A coarse-grained
garnet also contains a dolomite inclusion in sample
23A; dolomite is replaced by calcite at the rim (Fig.
2C). Fine-grained clinopyroxene (0.1-0.4 mm in
size) occurs in the matrix together with ilmenite,
magnetite, and green spinel. In sample 2G, zoned
olivine (0.2-0.4 mm) occurs in the matrix (Fig. 2D).

Type 2. Megacrystic garnet-bearing clinopyroxen-
ite (27A, 22A1, 3A-1, 4-1). Megacrystic garnet-bear-
ing clinopyroxenite consists of variable amounts of
megacrystic garnets (2.5-12 c¢m in diameter) in a
fine-grained matrix of Grt + Cpx + Ilm (0.2-0.4
mm). Abundant coarse-grained inclusions of clino-
pyroxene and ilmenite (+ minor spinel and amphi-
bole) are preserved in the megacrystic garnet. The

clinopyroxene inclusions contain abundant exsolu-
tions including garnet rods or blebs and oriented
amphibole and ilmenite lamellae, which are con-
fined in the core of Cpx (Fig. 3). Garnet blebs make
up from 1 to 15 vol% of the clinopyroxene host. The
amphibole lamellae are 0.01-0.04 mm wide and
0.4-0.6 mm long. Short rods of ilmenite (0.01-0.02
mm wide and 0.05-0.3 mm long) are oriented nearly
perpendicular to the amphibole lamellae. In sample
4-1, amphibole also occurs as primary inclusions
and as a rim around the clinopyroxene inclusion in
the megacrystic garnet; a secondary vein consisting
of Amp + Chl + Ep + Spl aggregates also crosscuts
garnet megacrysts. In sample 22A1, megacrystic
garnet has been completely replaced by secondary
minerals (plagioclase, epidote, chlorite), whereas
cpx inclusions are still preserved and contain garnet

inclusions and few ilmenite rods (Fig. 4A).
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0.5mm

FIG. 4. A. Photomicrograph showing a lamellae-bearing clinopyroxene (Cpx) inclusion in a megacrystic garnet (Grt),

which has been completely replaced by secondary plagioclase, epidote, and chlorite (Plag + Ep + Chl). B. Lamellae-rich

clinopyroxene porphyroblast contains spinel + ilmenite + magnetite inclusion, which is surrounded by a thin garnet rim.

C and D. Photomicrographs showing lamellae-rich clinopyroxene porphyroblasts in a matrix of fine-grained Cpx + Grt +

IIm. A and B are plane-polarized light; C and D are crossed-polars.

Type 3. Porphyroblastic clinopyroxene-bearing
clinopyroxenite (1B, 3A). Porphyroblastic clinopy-
roxene-bearing clinopyroxenite contains coarse-
grained clinopyroxene (0.8—-4 mm) with abundant
garnet, ilmenite, and magnetite exsolution lamellae
(Fig. 5). The fine-grained matrix (0.1-0.3 mm) con-
sists of Cpx + Ilm with minor Grt, Spl, and Mag
(Figs. 4B, 4C, and 4D). Garnet exsolution occurs as
relatively large elongated blebs (0.2 x 0.03 mm),
whereas Ilm + Mag occur as small lamellae (0.05
mm long) in the host clinopyroxene. Magnetite typi-
cally occurs as smaller, isolated rods or intergrowths
with ilmenite, and appears to be exsolved from
early-formed ilmenite (Fig. 5). Minor garnet and
green spinel also occur in the matrix. In sample 3A,
an intergrown Spl + Ilm + Mag inclusion occurs in a
porphyroblastic clinopyroxene; a thin garnet rim
grows around the inclusion (Fig. 4B). Parallel layers

consisting of fine-grained Ilm also exist in the
matrix of this sample. Although ilmenite grains do
not show elongated shapes caused by deformation,
pressure shadows consisting of ilmenite are present
around the clinopyroxene porphyroblasts.

Type 4. Equigranular garnet clinopyroxenite (1A,
1D). This type of garnet clinopyroxenite is equigran-
ular and composed of Grt + Cpx + Ilm. Garnets
(0.2-0.4 mm) occur as interstitial phases between
clinopyroxenes (0.1-0.3 mm). Some garnet grains
are surrounded by a thin kelyphitic corona of
epidote, plagioclase, and chlorite.

Dunite

Dunite crops out along the margin of the clinopy-
roxenite body, and consists of >90 vol% equigranu-
lar olivine (0.2-0.3 mm in size). Chromite occurs as
interstitial grains between olivine grains. Minor
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F1G. 5. A and B. BSE images showing garnet (Grt), ilmenite (Ilm), and magnetite (Mag) exsolutions in host clinopy-

roxenes (Cpx). C. BSE images showing ilmenite and magnetite intergrowths in clinopyroxene.

secondary amphibole, talc, and chlorite are also
present.

Mineral Chemistry

Mineral compositions of representative garnet
clinopyroxenite (2G, 2F, 15A, 1B, 3A, 27A, 4-1) and
dunite (3B) were analyzed employing a JEOL super-
probe 733 at Stanford University under the operat-
ing conditions 15kv acceleration potential, 12 nA
beam current, and peak counting times of 20 sec-
onds. Total iron is expressed as FeO. All Fe is
assumed to be Fe?* for olivine, garnet, and clinopy-
roxene. The Fe?* content of chromite was calculated
from charge balance, assuming total cations = 3.
The results are described as follows (see Table 1).

Garnet

Compositions of analyzed garnets are plotted in
Figure 6A. For porphyroblastic or megacrystic

garnet-bearing clinopyroxenites (type 1 and 2),
garnet has a similar composition regardless whether
it occurs as in porphyroblast, megacryst, or matrix.
For sample 15A, porphroblastic garnets that contain
green spinel have an average composition
of Prp,. ,Grs, Alm,, .Sps, -, whereas the com-
position of garnets in the matrix is lower in pyrope,
but higher in grossular content (about
Prp,, ,Grs,; sAlmy, \Sps; ). For sample 27A, the
megacrystic garnet is homogeneous in composition
with Prp,, (Grs,- ,Alm,y,Sps, , on average, which
is slightly higher in grossular and lower in almand-
ine content than that from porphyroblastic garnet;
garnet in matrix has an average composition of
Prp,, ,Grs,q ;Alm ¢Sps; .. For sample 2G, por-
phyroblastic and matrix garnet has an average
composition of Prp,, Grs,, Alm,, ,Sps,,. For
sample 2F, porphyroblastic garnet has an average
composition of Prp,, (Grs,, | Alm,, -Sps ., whereas
the matrix garnet has an average composition of
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FIG. 6. A. Compositions of megacrystic, porphyroblastic, matrix garnets, garnet exsolutions in porphyroblastic cli-

nopyroxenes, and garnet inclusions in zircons from the Rizhao garnet clinopyroxenites. B. Compositions of porphyro-
y , and t incl fi the Rizh t cl y tes. B. Composit f porphy:

blastic and matrix clinopyroxenes, clinopyroxene inclusions in megacrystic garnet, and clinopyroxene inclusions in

zircons from the Rizhao gamet clinopyroxenites. Abbreviations: mega = megacryst; porp = porphyroblast; mat = matrix;

exs = exsolution; inc = inclusion.

Prp,, (Grs,, -Alm,, Sps, -. For porphyroblastic Cpx-
bearing clinopyroxenite (type 3), garnet exsolution
in cpx porphyroblasts has a similar composition as
that of the garnets in matrix. Garnets from type 3
clinopyroxenite are lower in pyrope and higher in
grossular contents than those from types 1 and 2
clinopyroxenite. For sample 3A, garnet exsolution
in host cpx has an average composition of
Prp g oGrsgy gAlm g oSps ¢; a garnet rim around
a spinel inclusion in coarse-grained cpx shows
a composition of Prp 4 ,Grs ,Alm,, (Sps 5; the
composition for garnet in the matrix is about

Prp,g ,Grsg Almyg (Sps, o. For sample 1B, garnet
exsolution in cpx has a composition of
Prp, ,Grsg, gAlmy, (Sps, ,. Garnets from types 1
and 2 clinopyroxenite are characterized by low TiO,
(0-0.16 wt%) and relatively high Cr,0, (0-0.56
wt%) contents; garnets from type 3 clinopyroxenite
contain higher TiO, (0.09-0.40 wt%) but very low
Cr,0, (0-0.02 wt%) contents.

Clinopyroxene

Similar compositions were obtained for exsolu-
tion-rich porphyroblastic Cpx, Cpx in the matrix, or
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FIG. 7. Compositions of amphiboles as primary inclusions
in megacrystic garnet, exsolution in clinopyroxene inclusions
in garnet, secondary rims around clinopyroxene inclusions,
and secondary vein crosscutting megacrystic garnet.

inclusions in megacrystic garnet. The analyzed
clinopyroxenes are diopside with Jd, ; and negligi-
ble Aeg component (Fig. 6B). Lamellae-bearing
porphyroblastic clinopyroxene has a composition of
Wo,49 9.50 1505 046 5F55 64> With low FeO (2.17-2.65
wt%) and Al,0, (1.97-3.58 wt%). Fine-grained
clinopyroxene in the matrix has a composition of
Wo,g 650517 3451589 7.5 9> With ALO, of 0.72-3.57
wt% and FeO of 1.47-2.93 wt%. Clinopyroxene
inclusions in megacrystic garnet show a composition
of Wo,q ,En,, ,Fs, . with similar AL,O, (1.69-2.97
wt%) and FeO (1.83-2.28 wt%) content.
Olivine

Olivine from the olivine-bearing clinopyroxenite
2G is Mg-rich forsterite and shows distinct composi-
tional zoning (see Fig. 2D), with Fog o, in the core
and Fo_. in the rim (Table 1). Most analyzed olivine
grains from this sample contain low MnO (0.2-0.4
wt%), Ca0 (<0.08 wt%), and TiO, (<0.12 wt%).
Olivine from dunite 3B is relatively homogeneous,
and is more Mg-rich (Fog,) than that from the
clinopyroxenite. It also contains low MnO (<0.11
wt%); both CaO and TiO,, contents are below detec-
tion limits.

Amphibole

Amphibole occurs as primary inclusions in
megacrystic garnet, exsolution lamellae in clinopy-

roxene inclusions, and secondary rims around clino-
pyroxene inclusions in megacrystic garnet from
sample 4-1. These amphiboles are pargasitic horn-
blende with similar compositions, except that
amphibole as primary inclusions has the highest
Na,O content, and secondary amphible around
clinopyroxene inclusions has the lowest Na,O con-
tent (Fig. 7). These pargasitic hornblendes contain a
considerable amount of K,0 (0.50-1.01 wt%). They
are high in Al,0, (13-14 wt%) and magnesian (Mg/
Mg + Fe?* = 0.87-1.00); these characteristics are
similar to those of upper mantle-derived amphi-
boles (Haggerty, 1995). Amphibole also occurs in a
retrograde vein cross-cutting the megacrystic garnet.
This secondary amphibole contains lower Na,O
(0.47-2.17 wt%) and Al (1.117-1.669) contents.
Minor secondary amphibole also occurs in dunite
3B. It is tremolite with a high Mg/(Mg + Fe) of about
0.97.

Chromite and spinel

Matrix chromite in dunite 3B contains high
Cr,0, (50-54 wt%); the Cr/(Cr+Al) ratio is 0.76—
0.79, whereas Mg/(Mg + Fe?*) is 0.25-0.26. On the
other hand, green spinel occurs as both inclusion
and matrix phases in clinopyroxenite. In sample
15A, spinel inclusions in garnet porphyroblasts are
an Mg-and Al-rich variety; the Cr/(Cr + Al) ratio is
0.05 and the Mg/(Mg + Fe?*) ratio is about 0.60. In
sample 3A, spinel also occurs as inclusion in a por-
phyroblastic clinopyroxene and is rimmed by garnet
overgrowth. This spinel contains almost no Cr, and
the Mg/(Mg + Fe?*) ratio is about 0.62. Spinels from
the matrix of sample 2G and retrograde veins cross-
cutting sample 4-1 are also low in Cr/(Cr + Al) (0—
0.03) and Mg/(Mg + Fe?*) is 0.43-0.54.

SHRIMP U-Pb Zircon Dating

Sample descriptions and analytical method

Zircons from 19 adjacent garnet clinopyroxenite
samples from the Hujialing body were dated by
SHRIMP. Zircons were separated according to the
following procedure. (1) 19 samples of 1-2 kg each
were crushed and sieved to small grain size. (2)
Hand magnets were used to remove iron fillings and
metal oxides from the sample. (3) A slope magnetic
separator was then used to separate lower magnetic
susceptibility minerals such as zircon and apatite
from iron-bearing phases like garnet, olivine, and
pyroxene. (4) Apatite was separated from zircon
by desilting using alcohol (or by heavy liquid
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techniques), and minor metal sulfide was removed
by high-frequency dielectric separation. Finally (5)
zircons were hand-picked using a binocular micro-
scope.

Zircon separates were mounted in epoxy,
polished, and coated with gold before analysis.
Cathodoluminescence (CL) examination was done
with a JEOL JSM 5600 scanning electron micro-
scope; U-Pb analyses employed the SHRIMP-RG
(sensitive high-resolution ion microprobe-reverse
geometry) at the Stanford/United States Geological
Survey Microanalytical Center. Analytical spots ~30
um in diameter were sputtered using an ~5 nA 0%
primary beam. Six scans through a 9 mass table
were made for data collection. The measured 2°Ph /
238U ratios were calibrated with standard zircon R-
33 (419 Ma, quartz diorite of Braintree complex, VT,
Black et al., 2004), and the U concentrations were
calibrated with standard zircon CZ3 (550 ppm U).
Data reduction and processing used the SQUID and
ISOPLOT (Ludwig, 2001a, 2001b). Isotope ratios
and individual ages in Table 2 are reported with 1o
errors, but the weighted mean ages are quoted at 2.

Results

Zircons show rounded to subrounded shape and
the size ranges from 60-100 pm. Some zircon grains
are homogeneous and exhibit strongly luminescent
CL images, whereas others show slightly patchy to
chaotic internal structure and are relatively weakly
luminescent. Most grains are surrounded by thin,
relatively stronger luminescent CL rims (Fig. 8) that
are too thin to analyze. Garnet, clinopyroxene, and
dolomite inclusions in these zircons were analyzed
using a JEOL 733 superprobe at Stanford Uni-
versity. Garnet has a large compositional range
(Prpyg 506185 s, Almy 5-Spsi 5 7). with low TiO,
(0-0.12 wt%) and Cr, 0, (0-0.11 wt%). Clinopyrox-
ene ranges from Jd. to Jd,,, but with a relatively
homogeneous Ca/Mg/Fe ratio (about
Wo,g 4 Eny;  Fs, o). ALO, (1.1-2.5 wt%) and FeO
(1.8-2.5 wi%) are also low for the clinopyroxenes.

The SHRIMP U-Pb data are summarized in
Table 2. Eleven spot analyses were conducted on 11
zircon grains. Our analyses yielded U contents
between 34 and 1226 ppm, with most in the range of
100-300 ppm. Th contents range from 16 to 258
ppm and Th/U ratios are from 0.06 to 0.94 (Fig. 9).
All analyses plot near the concordia on a Tera-Wass-
erburg (TW) diagram (Fig. 10). The 297Pb corrected
206ph/238U age for each analysis ranges from 209 to

TABLE 2. U-Th-Pb SHRIMP Zircon Data from the Rizhao Garnet Clinopyroxenite (HJL) from the Sulu Terrane!

Uncorrected
207p}, / 206p},

Uncorrected
2387 / 206p},

Common

206ph* / 2381 age, Ma

206}y / 238

U, ppm Th, ppm Th/U 206Ph, 9%

Spot name

Garnet clinopyroxenite HJL34

217+ 2

.0342 + .0003
.0329 + .0004:
.0339 = .0001
.0330 = .0003
.0337 +.0003

.0515 +4.5191
0527 +4.0453

.0502 + 1.3379

29.2056 + 0.9698

0.13
0.30

-0.03

0.94
0.23
0.22
0.41
0.06
0.42
0.67
0.17
0.57
0.47
0.13

139

153
134
1226
223
281

HJL-2

209 + 2

30.2841 + 1.0421

30

HJL-5

215+ 1

29.5188 + 0.3854
30.2796 + 0.7792

HJL-6

210+ 2

.0500 + 3.1084
.0508 +2.9107
0509 + 4.2947
.0545 + 4.1979
.0510 +2.0014

.0508 + 8.1927

-0.03

39
16
53

HJL-10

214+ 2

29.6789 + 0.7343

0.04
0.07
0.52
0.06
0.03
-0.02

HJL-11

210 + 2

.0331 + .0004:
.0337 = .0004
.0346 + .0002

30.1549 = 1.0715

128
128
584

HJL-15

214+ 2

29.5491 + 1.0542

33

HJL-16

2191

28.9105 + 0.5009
29.9952 + 2.0609

29.6670 + 0.8726

94
19
91

HJL-17

219+ 5

0345 = .0007
.0337 +.0003
.0340 = .0002

34

202
360

HJL-18

214+ 2

.0503 + 3.4749
0519 + 2.5963

HJL-19

216 £ 2

29.3429 + 0.6733

46 0.18

HJL-20

IPh* corrected for common Pb using 27Ph (Williams, 1998). All errors are 16 of standard deviation.



Downloaded by [Tatsuki Tsujimori] at 17:38 04 October 2013

PETROLOGY AND U-Pb SHRIMP GEOCHRONOLOGY 745

21412%"

Th/U: 0.47
U: 202 ppm

(&
2142 Ma \ ‘
Th/U: 0.06

U: 281 ppm -

214 +£2 Ma

FIG. 8. A. Cathodoluminescence (CL) images of zircons
from the Rizhao garnet clinopyroxenite. B. BSE images of zir-
cons from the same sample showing inclusions of garnet and
clinopyroxene. Scale bars are 30 pm.

219 Ma; the weighted mean 29Ph/Z38U age is 215
2 Ma (n=11; MSWD = 3.9).

Discussion

Origin and metamorphic evolution

The Rizhao garnet clinopyroxenite has been
reported to show a mantle signature, such as 87Sr/
86Sr (0.7038-0.7044), 13Nd/144Nd (0.5127—
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FI1G. 9. U and Th concentrations (A), and Th/U ratio
versus 20°Ph/Z38U age of zircons (B) from the Rizhao garnet
clinopyroxenite.

0.5128), and 8'80 in garnet (4.83-5.64%0) and
clinopyroxene (4.99-5.64%o) (Jahn, 1998; Zhang et
al., 2000). Tt has the lowest 87Sr/%Sr and the highest
143Nd/'*Nd ratios among all analyzed peridotites
from the Sulu terrane (Zhang et al., 2000), which
indicates that it may have crystallized in the upper
mantle. It shows convex upward REE patterns (Li et
al., 1993; Jahn, 1998), which has been found in
pyroxenite xenoliths and pyroxenite layers in alpine
peridotites (McDonough and Frey, 1989). This may
suggest that it is related to the accumulation of
clinopyroxene during magma differentiation in the
mantle.

The initial tectonic setting and history of the
Hujialing clinopyroxenite remain controversial.
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FIG. 10. Tera-Wasserburg diagram showing SHRIMP U-Pb analyses of zircons from the Rizhao garnet clinopyroxen-

ite. Uncorrected ratios are plotted. Error ellipses are shown as 16, whereas the uncertainty of the weighted mean age is

26. MSWD = mean square of weighted deviates.

Zhang and Liou (2003) studied two representative
garnet clinopyroxenites characterized by Grt + Ilm
exsolution in the clinopyroxene host. They inter-
preted the parental phase as either a homogeneous
clinopyroxene formed at near-solidus conditions
(hypothesis A) or a majoritic garnet from the mantle
transition zone at high P (hypothesis B). However,
both hypotheses have problems. Hypothesis B can-
not explain the occurrence of low-pressure Mg-Al
spinel inclusions in both porphyroblastic garnet and
lamellae-rich clinopyroxene (which makes hypothe-
sis A more plausible). However, hypothesis A can-
not account for the high Ti and H,O content in the
Rizhao clinopyroxenite as indicated by abundant
ilmenite and amphibole exsolution in clinopyrox-
ene. Experimental study by Zhang et al. (2003) used
Rizhao garnet clinopyroxenite as starting material
and showed that the Ti solubility has a pronounced
positive correlation with pressure between 5 and 15
GPa in garnet, but is low in coexisting clinopyrox-
ene. Chen and Xu (2005) also suggested a pressure
of 8 GPa for the formation of the amphibole-bearing
clinopyroxene in order to account for the contained
~2000 ppm H,0.

Here we propose a new hypothesis C modified
after hypothesis B of Zhang and Liou (2003). The
Rizhao clinopyroxenite is considered to have a five-
stage evolution as described below (Figs. 11 and
12).

Stage I: Formation of spinel clinopyroxenite at
shallow depth (1-2 GPa). We suggest that the proto-
lith of the Hujialing clinopyroxenite body is spinel
clinopyroxenite that formed at a shallow depth
where Mg-Al spinel was stable. This is supported by
spinel inclusions in porphyroblastic garnet from
sample 15A (Fig. 2B) and a spinel + ilmenite + mag-
netite grain enclosed by a thin garnet rim around in
a cpx porphyroblast from sample 3A (Fig. 4B). Mag-
netite and ilmenite also grew together with spinel
during this stage, inasmuch as spinel inclusions are
invariably associated with these two minerals.
Based on the experimentally determined stability
field for the spinel peridotite (Gasparik, 1984; Wood
and Holloway, 1984; Herzberg and Gasparik, 1991),
we assume a pressure of around 1-2 GPa for stage [.

Stage II: Growth of majoritic garnet at the transi-
tion zone (>15 GPa). After the formation of the
spinel clinopyroxenite protolith, the Hujialing body
was carried to the great depths (>450 km) by mantle
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FIG. 11. Reconstructed P-T-time paths of the Rizhao garnet clinopyroxenite. Stage I = original spinel clinopyroxen-
ite; Stage 11 = formation of majoritic garnets at the mantle transition zone; Stage Il = majoritic garnets exsolved to Cpx +
Grt + IIm + Amp intergrowths during decompression; Stage IV = formation of porphyroblastic /megacrystic garnets and
recrystallization of matrix Cpx + Grt + [Im under UHP conditions; Stage V = retrogression during exhumation.

convection and formed majoritic garnet according to
the Zhang et al. hypothesis B. At P > 15 GPa and
T = ~1400°C, this majoritic garnet would contain
high CaO and considerable amounts of FeO, TiO,,
Na,0, and trace H,0 (Zhang and Liou, 2003; Zhang
et al., 2003), and thus is qualified as the precursor
of the clinopyroxene with Grt + Ilm + Amp exsolu-
tion. Chen and Xu (2005) also suggested a high-
pressure (up to 8 GPa) origin for the precursor of
lamellae-rich clinopyroxene from this area in order
to accommodate a considerable amount of H,0 in
Cpx, as indicated by amphibole exsolution.

Stage III: Exsolution of Cpx + Grt + Ilm + Amp
during decompression (720-880°C, 3 GPa). Follow-
ing stage II, the Hujialing body returned to shallow
depth through mantle convection, and was emplaced

into the subducting slab during the Triassic conti-
nental collision. Homogeneous Ti-bearing majoritic
garnet broke down to form Cpx + Grt + Ilm + Amp
intergrowth during decompression (Figs. 3-5). Par-
gasitic amphibole is stable at pressures up to 3.2
GPa at 900°C (Niida and Green, 1999), and thus we
assume that the pargasitic amphibole exsolutions
appear at P <3 GPa in the clinopyroxene. Tempera-
tures were estimated using three Fe-Mg exchange
geothermometers (Powell, 1985; Krogh, 1988;
Ravna, 2000). In this study, all Fe is assumed to be
Fe2* for Cpx and Grt. The temperature estimate for
this stage is based on garnet exsolution-host clino-
pyroxene pairs. Sample 1B yields temperatures from
720-850°C, and sample 3A gives a range of 750-
880°C at the assumed pressure of 3 GPa (Table 3).
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FIG. 12. A tentative model to interpret the origin of the Rizhao garnet clinopyroxenite.

Stage IV: Growth of porphyroblastic/megacrystic
garnet and recrystallization of mairix Cpx + Grt +
Iim under UHP conditions (620-880°C, 3 GPa; 215
Ma). After emplacement in the subduction zone, the
Hujialing body experienced Triassic UHP metamor-
phism. Porphyroblastic/ megacrystic garnet from
types 1 and 2 clinopyroxenite grew during this
stage. Garnet coalesced to form megacrysts that

engulfed relict lamellae-rich clinopyroxene,

ilmenite, and amphibole as inclusions (Fig. 3).
Porphyroblastic garnet formed subsequently and
lamellae-rich clinopyroxene recrystallized to the
matrix assemblage of Cpx + Grt + [Im. The boundary
of clinopyroxene porphyroblasts was obliterated by
recrystallization of the matrix minerals as seen in
thin section (Fig. 4D).

Quartz pseudomorphs after coesite and abundant
exsolved rutile needles are present in garnet from
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TABLE 3. P-T Estimates for Different Stages for the Rizhao Garnet Clinopyroxenite

T °C at P = 30 kbar

Grt-Cpx Grt-Cpx Grt-Cpx

Type Sample Stage Powell, 1985) (Krogh, 1988) (Ravna, 2000)
3 HJL1B Exs grt - Host cpx I 847 715 727
3 HJL3A Exs grt - Host cpx 11 883 757 754
1 HJL2G Mat grt - Mat cpx v 720 684 616
1 HJL2F Mat grt - Mat cpx v 753 716 646
1 HJL15A Mat grt - Mat cpx v 816 762 697
2 HJL27A Mat grt - Mat cpx IV 883 821 754
3 HJL3A Mat grt - Mat cpx v 829 717 706

Zxc Inc. v 839! 769! 733!

Temperature estimates are obtained from mineral inclusions in zircon from the Rizhao clinopyroxenite.

eclogite layers in a nearby ultramafic body (Zhang et
al., 2003). This ultramafic has similar rock associa-
tions and mineral compositions as the Hujialing
body, and may have experienced the same UHP con-
dition during the Triassic subduction (Zhang and
Liou, 2003). Therefore, we assume a pressure of >3
GPa. Temperature estimates based on matrix Gri—
matrix Cpx pairs from type 1 clinopyroxenite (sam-
ple 2G, 2F, 15A) yield temperatures from 620-
820°C where a pressure of 3 GPa is assumed; in
contrast, matrix Grt-Cpx pairs from type 2 (sample
27A) and type 3 (sample 3A) give the temperature
range of 750-880°C and 710-830°C, respectively
(Table 3). The variation in matrix garnet composi-
tion from type 1 and 2 samples to type 3 samples
may result from the variation in bulk composition or
the slightly different P-T conditions for formation of
these garnets.

Stage V: Reirogression during exhumation. Many
lines of evidence suggest that the Hujialing clinopy-
roxenite was subjected to retrograde metamorphism
during exhumation. Green spinel occurs in the
matrix of the clinopyroxenite; a megacrystic garnet
was completely replaced by the secondary mineral
assemblage Plag + Ep + Chl; another megacrystic
garnet is crosscut by a secondary vein consisting of
Amp + Spl + Ep + Chl aggregates; matrix garnets are
surrounded by a thin kelyphitic corona of epidote,
plagioclase, and chlorite. After UHP metamor-
phism, the Hujialing clinopyroxenite ascended back
into the spinel peridotite stability field, and experi-
enced amphibolite- to greenschist-facies retrograde

metamorphism at shallower depths. Our speculative
hypothesis is basically consistent with the petro-
graphic observations and mineral chemistry, and
provides another possible history for the Hujialing
garnet clinopyroxenite.

A similar but more complex evolution involving
mantle convection has recently been proposed for an
orogenic peridotite nodule from the Western Gneiss
Region of Norway (Spengler et al., 2006). This
Archean Norway mantle peridotite may have been
delaminated or sank to the mantle transition zone
accompanied by majorite formation, and then
became entrained in a subsolidus upwelling fol-
lowed by emplacement in a Caledonian subduction
complex, and exhumation. Moreover, this complex
history has been reproduced in numerical studies of
early mantle convection (De Smet et al., 2000).
However, it deserves further investigation regarding
how the Hujialing body traveled from shallow (stage
1) to great depths (stage II) in the mantle wedge and
back up to shallow depths (stage III) later on, and
the emplacement mechanism of the body into the
subducting slab. Further detailed experimental and
mineralogical studies of the different exsolution
features in the porphyroblastic clinopyroxene would
be helpful to uncover the P-T-time evolution of the
Hujialing clinopyroxenite. The dunite from the
Hujialing body may have experienced the same
history, but the mineral assemblage (mainly olivine)
is too simple to record any such complex P-T
evidence. An unserpentinized garnet peridotite from
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the Hujialing body might provide important infor-
mation on its original tectonic setting.

Formation of zircon and UHPM timing

Zircons usually do not grow in ultramafic rocks
because of the low bulk-rock Zr and Si contents.
Zircons in the Hujialing clinopyroxenite may have
formed from metasomatic fluid derived either from
the subducting slab or from the mantle. Dolomite
inclusions were found both in a zircon and a porphy-
roblastic garnet in the matrix (Fig. 2C). Carbonates
(dolomite and magnesite) and hydrous phases (phlo-
gopite and Ti-clinohumite) in peridotite from the
CCSD drill hole in conjunction with the formation of
zircons have been considered to be the result of
metasomatism in the mantle (Zhang et al., 2005a,
2005c¢). We suggest that the Hujialing clinopyroxen-
ite may have been metasomatized by CO,- and Zr-
bearing fluids in the subduction zone. Further REE
and stable isotope studies could provide more
insights on the nature of the metasomatism.

The morphology, internal structure, and Th-U
chemistry of the zircons we studied suggest a meta-
morphic origin for several reasons. Most zircon
grains are equant in shape. Morphology of zircon is
considered to be an expression of the stability and
the relative growth rates of crystal faces; an isomet-
ric/rounded morphology corresponds to the least
stability of planar crystal faces and thus the highest
metamorphic grade (Vavra et al., 1999). Their homo-
geneous to patchy CL patterns lack inherited cores,
and low Th/U ratios (0.06-0.94) also indicate that
these zircons formed during metamorphic recrystal-
lization (Hokada et al., 2004).

Zircon inclusions are present in the matrix clino-
pyroxene that recrystallized during stage IV; thus we
suggest that these zircons have also formed during
UHP metamorphism in stage IV. Garnet and clino-
pyroxene inclusions also occur in zircon (Fig. 8).
Compositions of garnet (Prp,, ,,Grs,, o, Alm,, -
Spsg9.0.7) inclusions lie between those from type 3
clinopyroxenite (3A, 1B) and the rest of the ana-
lyzed garnets (Fig. 6A). Clinopyroxene is relatively
rich in Jd component (Jd; to Jd,;) and contains less
augite content than those matrix and porphyroblas-
tic clinopyroxenes (Fig. 6B). Temperature estimates
based on garnet and clinopyroxene inclusions in the
same zircon grain are 730-840°C, consistent with
estimates for stage IV. The Hujialing body may have
been emplaced into the subduction zone (stage 11I)
during its travel from the mantle transition zone

(stage II) to shallow depths; the zircons only formed
during the later UHP metamorphism (stage IV).

The zircon U-Pb age of 215 + 2 Ma is slightly
younger than the reported UHP ages of 220-240 Ma
for the Dabie-Sulu terrane (e.g., Li et al., 1993;
Hacker et al., 1998; Liu et al., 2004a, 2004b). How-
ever, garnet and clinopyroxene—but no retrograde
minerals—are included in zircons from the Rizhao
clinopyroxenite. The temperature estimates from
these inclusions are within the range of peak meta-
morphic conditions (750-950°C) for the Dabie-Sulu
UHP terrane (Liou and Zhang, 1998; Zhang et al.,
2000). This age is not significantly different from
eclogites within garnet peridotite from the
Rongcheng area which does not show retrograde
evidence either (Zhao et al., 2006). Therefore, the
215 + 2 Ma age is considered as representing the
time of UHP metamorphism of the Hujialing ultra-
mafic body.

Conclusions

Hypothesis C provides an alternative but compli-
cated history for the Rizhao clinopyroxenite, in con-
trast to hypotheses A and B proposed by Zhang and
Liou (2003). The protolith could have been a spinel
clinopyroxenite brought to great depths (>450 km)
to form majoritic garnet; it then experienced decom-
pression exsolution as it traveled back to shallow
mantle depths. During Triassic continental colli-
sion, the Rizhao clinopyroxenite body was emplaced
into the subduction zone and recrystallized to form
megacrystic/porphyroblastic garnet and a matrix
assemblage of Cpx + Grt. Our zircon U-Pb dating
provides an age constraint of 215 + 2 Ma for peak
UHP metamorphism of the clinopyroxenite body.
Hypothesis C still remains to be tested. Systematic
experimental and mineralogical investigations are
needed to completely understand the evolution
history of the Rizhao clinopyroxenite.
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