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ABSTRACT  The Shanderman eclogites and related metamorphosed oceanic rocks mark the site of closure of the
Palacotethys ocean in northern Iran. The protolith of the eclogites was an oceanic tholeiitic basalt
with MORB composition. Eclogite occurs within a serpentinite matrix, accompanied by mafic rocks
resembling a dismembered ophiolite. The eclogitic mafic rocks record different stages of metamor-
phism during subduction and exhumation. Minerals formed during the prograde stages are preserved
as inclusions in peak metamorphic garnet and omphacite. The rocks experienced blueschist facies
metamorphism on their prograde path and were metamorphosed in eclogite facies at the peak of
metamorphism. The peak metamorphic mineral paragenesis of the rocks is omphacite, garnet
(pyrope-rich), glaucophane, paragonite, zoisite and rutile. Based on textural relations, post-peak
stages can be divided into amphibolite and greenschist facies. Pressure and temperature estimates for
eclogite facies minerals (peak of metamorphism) indicate 15-20 kbar at ~600 °C. The pre-peak blue-
schist facies assemblage yields <11 kbar and 400-460 °C. The average pressure and temperature of
the post-peak amphibolite stage was 5-6 kbar, ~470 °C. The Shanderman eclogites were formed by
subduction of Palaeotethys oceanic crust to a depth of no more than 75 km. Subduction was
followed by collision between the Central Iran and Turan blocks, and then exhumation of the high
pressure rocks in northern Iran.
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INTRODUCTION southeast Asia (Zhang et al., 2008), separating

Eclogite and blueschist facies rocks formed from oce-
anic crust protoliths (e.g. Agard et al., 2009) along
with serpentinites mark the site of subduction and
closure of oceanic basins and subsequent collision to
form suture zones. Eclogite and blueschist occur in
many different parts of the Alpine-Himalayan
orogenic belt and are mainly Cretaceous and Tertiary
in age and represent the subduction of the Mesozoic
Neotethys oceanic crust beneath Eurasia (e.g., Okay,
1989; Tsai & Liou, 2000; Konstantinovskaia et al.,
2003; Liou et al., 2004; Whitney & Davis, 2006; Cet-
inkaplan et al., 2008; Galoyan et al., 2009; Yang
et al., 2009; Rolland et al., 2009b; Okay & Whitney,
2010; Whitney et al., 2011).

Older eclogite and blueschist within the Alpine-
Himalayan orogen are scarce, especially at the wes-
tern part of this orogen. There are not many reports
of Triassic or older rocks indicating the suture of the
Palacotethys (e.g. Okay et al., 2002). The Palaco-
tethys suture extends eastwards from Western Europe
through middle Asia, northern Tibet to China and
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regions characterized by two fundamentally different
tectonic styles in the structure of the Tethysides. In
Asia, regions north of the suture include northern
parts of Turkey, Iran, Turkmenistan, Afghanistan,
Tajikistan, Kyrgyzstan, Uzbekistan, Kazakhstan and
large parts of the Russian Federation and China
(Sengor, 1992) (Fig. 1).

Two main questions concerning the Palaeotethys
oceanic crust and its suture are the geological evi-
dence for the location of the suture, and the nature
and direction of the Palacotethys oceanic crust sub-
duction. The Palaeotethys subduction system is
defined mainly using volcanic, plutonic and ophiolitic
rocks along the Tethysides. Some 239-222 Ma grani-
toids and volcanic rocks from Turkey are considered
to be a result of Palacotethys closure (Moix et al.,
2008). Triassic calcalkaline volcanic rocks in the Cau-
casus are traceable towards the east in Afghanistan,
mark the Palaeotethys closure (Tikhomirov et al.,
2004; Gamkrelidze & Shengelia, 2007).

Carboniferous and Triassic volcanic rocks and
some Devonian to Carboniferous intrusions in the
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southwest of Turkmenistan represent Palaeotethys-
related activity to the east of the study area (Kazmin
et al., 1986; Lemaire et al., 1997). In the northern
part of Afghanistan, I-type granitoids of Hindu Kush
have ages between 210 + 10 and 112 + 20 Ma, and
S-type granitoids have been dated at 193 + 4 Ma
(Debon et al., 1987). These are traceable westward
into east of Iran, where the granitoids are dated at
c. 256 to 211 £ 8 Ma (Majidi, 1978; Berberian &
Berberian, 1981) and are a result of Palaeotethys
subduction and subsequent collision.

Granitoids and related volcanic rocks occurring in
the Karakorum area (between Pakistan, Tibet and
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Pre-Late Triassic deformed units
m Alborz Palaeozoic Pre-Jurassic LG metamorphics

Devonian-Carboniferous Shanderman and Gasht
Metamorphic Complexes
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Afghanistan; Gaetani, 1997; Mattern & Schneider,
2000; Liu et al., 2004), north Tibet (Xiao et al., 2007;
Roger et al., 2008), China (Hennig et al., 2009) and
Thailand (Charusiri et al., 1993; Sone & Metcalfe,
2008; Kamata et al., 2009) are taken as magmatic ac-
tivitiy associated with subduction of the Palacotethys
oceanic basin and subsequent collision. Reports on
Palaeotethys ophiolites in Asia are restricted to those
from China (Zhang et al., 2008) and the southern
part of extensive ophiolitic exposures in Karakorum
Xu et al., 1992; Zhang et al., 1992; Mattern &
Schneider, 2000). Eclogite and blueschist, marking
the Palacotethys suture are restricted to eclogite
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(220-201 Ma) and blueschist (222-204 Ma) from the
ultrahigh-pressure Qiangtang terrane, China (Kapp
et al., 2003), eclogite from Lhasa (262 4+ 5 Ma, Yang
et al., 2009) and blueschists from SW Japan (330—
160 Ma, Nishimura, 1998).

There are different views as to the direction of sub-
duction of oceanic crust along different segments of
the Palaeotethys suture. Stampfli & Kozur (2006)
believe that the Karakaya fore arc basin in Turkey
formed during northward subduction of Palaeotethys
oceanic crust, whereas some believe that this subduc-
tion was southward (e.g. Sengor, 1979, 1990; Jassim
& Goff, 2006; Ruban et al., 2007). In the Caucasus,
Gambkrelidze & Shengelia (2007) have proposed syn-
chronous north and southward subduction. Further-
more, there are two ranges of granitoids in the
Karakorum that are interpreted as indicating north-
and southward subduction of Palacotethys oceanic
crust (Xu et al., 1992; Zhang et al., 1992; Mattern &
Schneider, 2000).

This investigation of eclogite and related rocks
from the Shanderman area in northern Iran adds to
information on the location, subduction polarity and
geodynamic evolution of the Palacotethys suture.
These Late Carboniferous (Zanchetta et al., 2009)
rocks are covered by Jurassic sedimentary rocks, and
represent a part of the Palacotethys suture along the
Alpine-Himalayan orogen within the Alborz range of
northern Iran. The Alborz range is located between
the Central Iranian block to the south and the south-
ern margin of Eurasia (Turan and south Caspian
basin) to the north. The tectonics, stratigraphy and
magmatism of the Alborz range have been the subject
of many investigations, especially in recent years (e.g.
Berberian, 1976; Kostka, 2002; Allen et al., 2003;
Vernant et al., 2004; Seyed-Emami et al., 2006; Zan-
chi et al., 2006; Zanchetta et al., 2009). This range is
divided geographically into three parts, namely
Talesh, Alborz and Kopeh Dagh mountains (from
west to east). The southern slope of the Alborz range
is characterized by Lower to Upper Palacozoic sedi-
mentary rocks. Ophiolitic, metamorphic and volcanic
rocks of the same age are exposed on the northern
slope, whereas on the southern slope they are
restricted to sites of major faults.

Some mafic and ophiolitic rocks along the Alborz
range are attributed to the Palaeotethys suture zone
(Stocklin, 1974; Alavi, 1991; Dercourt et al., 1993;
Garzanti & Gaetani, 2002; Stampfli & Borel, 2002;
Natal’in & Sengor, 2005; Moazzen et al., 2010). The
Talesh Mountains extend from the Azerbaijan
Republic in the north to south of the city of Rasht in
Iran. Alavi (1991) advanced the view that mafic and
ultramafic rocks of the Shanderman complex are a
part of the Alborz-Kopeh Dagh structural zone and
connected them with the Mashhad ophiolites in NE
Iran belonging to the Palacotethys suture. Dating the
Shanderman eclogites using Ar/Ar method on parag-
onite (Zanchetta et al., 2009) yiclded a Late Carbon-
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iferous age (315 £ 9 Ma). Zanchetta et al. (2009)
considered a possible Variscan Orogeny origin for
the Shanderman complex and proposed that this
complex is a fragment of the Upper Palacozoic Euro-
pean continental crust. According to their study, this
complex was stacked to the northern edge of the
Iranian plate at the end of Triassic.

In this study, new geochemical, mineralogical and
petrographical data are presented for the Shanderman
eclogites along with documentation of the P-T path
experienced by the rocks from subduction to exhuma-
tion, including new findings on blueschist facies meta-
morphism. The geochemical data and P-T results are
in turn used to argue against a continental crust and
an allochthonous origin for the studied eclogites (e.g.
Zanchetta et al., 2009). Instead, we will show that the
Shanderman eclogites were oceanic crust and mark
the Palacotethys suture in North Iran.

GEOLOGICAL BACKGROUND

The Alborz mountain range in north Iran is a result
of the Cimmerian orogeny (200-150 Ma) that
occurred as a result of the closure of the Palacotethys
ocean and the subsequent collision between Cimme-
rian blocks of Iran in the north with the southern
parts of the Eurasian margin (Stampfli ef al., 2002).
The Shanderman area is a part of the Talesh Moun-
tains (Fig. la,b), which form the western part of the
Alborz mountain range and flank the southwestern
coast of the South Caspian Sea (Zanchetta et al.,
2009). The pioneering work on the geology of the
Shanderman area was carried out by Clark ez al.
(1975), who called metamorphic rocks in the western
part of the Alborz collectively, the Asalam-Shanderman
complex.

The main rock types associated with eclogites in
the Shanderman area are dunite, gabbro, greenschist,
serpentinized peridotite (in some cases completely
converted to serpentinite), epidote amphibolite and
spilitic volcanic rocks. This rock assemblage is con-
sidered here to represent relicts of subducted oceanic
crust and associated mantle. However, owing to the
dismembered nature of the rock units, limited out-
crops, intense weathering and dense vegetation, origi-
nal igneous and tectonic contacts between these units
were not found. The ultramafic rocks are serpenti-
nized to different degrees and a serpentinite mélange
is formed. The main outcrop of the eclogite-bearing
serpentinite mélange appears east of Lachur village
(Fig. 2). Eclogite-bearing serpentinites are emplaced
either in pinkish fine-grained Jurassic limestone, or in
the Shanderman complex. Eclogite-bearing serpenti-
nites emplaced by reverse faults within these units.
The contacts are not exposed. Eclogite facies rocks
are found as blocks reaching up to 2 m in size in the
serpentinite mélange (Fig. 3a). They appear as green
rocks with relatively large (up to 1 cm) red garnet
crystals (Fig. 3b).
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Fig. 2. (a) Geological map of the Shanderman area (adopted
from Nazari et al., 2004), (b) Cross-section across the
Shanderman area, showing relation between different rock units.

Fig. 3. (a) Outcrop of Shanderman eclogite as blocks in serpentinite, (b) polished surface of an eclogite hand specimen (Sample
100.2) showing red garnet crystals and green omphacite and amphibole.

The metamorphosed ophiolitic complex of the
Shanderman area overlies basement rocks, which are
mainly gneiss, micaschist and garnet-amphibolite.
The best outcrop of the basement rocks is visible on
the Shanderman riverside and along a forest track
towards Lachur village (Fig 2). Rb-Sr dating of pelit-
ic schists and gneiss yielded ages of 375 + 12 and
382 + 47 Ma, respectively, showing that the age of
metamorphism of the pelites is Middle to Upper
Devonian (Crawford, 1977).

The metamorphosed oceanic complex of the Shan-
derman area is covered by a basal conglomerate of
Jurassic age (Shemshak Formation), containing ser-
pentinite, eclogite, amphibolite and micaschist frag-

ments. This shows that Asalam-Shanderman complex
was exposed during the early Jurassic, after the Cim-
merian collision.

PETROGRAPHY OF THE ECLOGITES AND
SERPENTINIZED PERIDOTITES

The Shanderman eclogites can be divided into fine-
grained foliated rocks (with crystals <I mm in length)
and medium to coarse-grained rocks (with crys-
tals > 1 mm in length) with weak foliation to massive
texture. Some eclogitic samples are highly retrogres-
sed. Mineral assemblages in representative samples
are provided in Table 1. Mineral name abbreviations

© 2013 John Wiley & Sons Ltd
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Table 1. Representative mineral assemblages in north Iran
eclogites.

Sample Grt Cpx Amp Rt Ttn Zo Qz Ab Cal Chl Wm Opq
1 5.38% + + + + o+ + o+ o+ + +
2 5.30 + + + + o+ + o+ + +
3 55 + + + + o+ + o+ o+ +
4 5.39A%  + + + + o+ + + +
5 5.27 + + + + o+ + o+ o+ + + + +
6 5.12 + + + + o+ + +
7 7 + + + + o+ + + + +
8 533 + + + + o+ + + + + +
9 537 + + + + o+ + + +
10 17.1 + + + + o+ + o+ o+ + + +
11 16.9 + + + + o+ + o+ o+ + + +
12 18.2 + + + + o+ + +
13 17.2 + + + + o+ + + + +
14 16.10 + + + + o+ + o+ +
15 l16.16* + + + + o+ + o+ o+ +
16 16.12 + + + + o+ + + +
17 16.2 + + + + o+ + o+ + + + +
18 24.1 + + + + o+ + + + +
19 5.47* + + + + o+ + o+ +
20 5.45 + + + + o+ + o+ o+ + +
21 13A + + + + o+ + o+ + +
21 18.3 + + + + o+ + o+ +
22 18.6 + + + + o+ + o+ +
23 242 + + + + + + +
24 7.1% + + + + o+ + o+ +
25 16.13 + + + + o+ + o+ o+ + + +
26 5424+ + + + o+ + + + +
27 18.10 + + + + o+ + +
28 18.1 + + + + o+ + o+ +
29 1135 + + + + o+ + o+ o+ + + + +
30 119 + + + + o+ + o+ +
31 113.1 + + + + o+ + + + + + +
32 100.2*% + + + + o+ + + o+ + +
33 1171 + + + + o+ + o+ o+ + + +

‘Wm, White mica.
*Analysed by EPMA.

are from Whitney & Evans (2010), unless otherwise
shown.

Fine-grained eclogites

Almost all fine-grained eclogitic samples of the Shan-
derman area contain garnet, omphacite, rutile,
amphibole, phengite, paragonite, zoisite, clinozoisite,
albite, quartz and calcite. Garnet in these samples is
euhedral and is wrapped by secondary hydrous
phases. Garnet is zoned in two distinct parts, garnet
I cores and garnet II rims. Garnet I has abundant
inclusions of amphibole, rutile, titanite, quartz, white
mica, albite, zoisite and clinozoisite in the core
(Fig. 4a). The garnet core (Grt I) formed as pre-peak
phase. Garnet II is poor in inclusions or is almost
inclusion-free. It crystallized as narrow rims around
garnet I (Figs 4a & 5a). Some radial fractures are vis-
ible around quartz inclusions in garnet, resembling
those around coesite inclusions in garnet (e.g. O’Bri-
en et al., 2001). Omphacite is abundant in fine-
grained samples, and defines a preferred orientation
(foliation) along with other matrix phases. Omphacite
contains rutile, quartz and glaucophane inclusions.
The fine-grained samples are divided into those
with and without glaucophane. Glaucophane is zoned
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and rimmed by calcic amphibole. The matrix of glau-
cophane-free eclogites contains barrositic and tremo-
litic amphibole. Paragonite is abundant as a matrix
phase and smaller flakes of phengite (0.5 mm) are
also present (Fig. 5¢). The samples contain relatively
large patches of paragonite, which is partially con-
verted to albite. Zoisite is rimmed by clinozoisite.
Some zoisite crystals cut the foliation (Fig. 4b).

Medium- to coarse-grained eclogites

Garnet makes up ~30% of the modal mineralogy of
these rocks. As in the fine-grained samples, garnet
shows two distinct parts (Grt I and II). The inner
parts of the garnet crystals (Grt I) are full of inclu-
sions (Amp, Ep, Rt, Ph, Qz and Ttn). The outer
parts (Grt II) are virtually inclusion-free. Again gar-
net exhibits radial cracks and parallel fractures.
Radial cracks occur around some quartz inclusions
(Fig . 4c). The fractures are filled by chlorite, amphi-
bole and Fe-oxides. The shape of garnet grains is
variable from idioblastic to xenoblastic. Samples rich
in hydrous phases show amphibole corona textures
around garnet. Omphacite, 1.5-2 mm in length
(Fig. 4d), is partly converted to amphibole and albite,
and contains glaucophane, rutile and quartz inclu-
sions. All samples show high modal amounts of
hydrous phases, with amphibole most prominent.
Amphibole of the prograde stage is preserved in gar-
net and is more bluish than matrix amphibole.
Fibrous amphibole in the matrix is tremolite-actino-
lite. White mica is typically <I mm in size and is
idioblastic. Some coarse patches of white mica seem
to have crystallized earlier than other hydrous miner-
als. Clinozoisite and zoisite are present in all samples.
In some samples, zoisite is coarse-grained (>5 mm)
and contains omphacite, rutile, albite and quartz as
inclusions (Figs 4e & 5b). White mica is reacted to
albite at its rims, locally and contains inclusions of
rutile and is mantled by inclusion-free zoisite in some
samples (Fig. 4e). Rutile is commonly overgrown by
titanite and occurs as inclusions in garnet, clinopy-
roxene, white mica, zoisite and in the matrix.

Greenschist

Greenschist is retrogressed eclogite (based on garnet
composition and textural relations). It contains gar-
net crystals up to 2.5 mm in size, which have abun-
dant inclusions in the core (Grt I). Narrow rims
contain fewer inclusions (Grt II). Large crystals
(>2.5 mm) contain green amphibole inclusions,
whereas amphibole inclusions in smaller garnet are
blue-green. These samples contain high amounts of
colourless chlorite in the matrix (Fig. 4g). Zoisite and
clinozoisite are present. Some zoisite crystals are
rimmed by clinozoisite (Fig. 4b). Matrix amphibole is
zoned with pale green colour in the core and blue-
green at the rims (Fig. 4h). Samples of this group
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Fig. 4. Photomicrographs of Shanderman eclogite. (a) Garnet core with inclusions and rim without inclusions (Sample 5.47, PPL). (b)
Zoisite rimmed by clinozoisite, cutting the rock foliation (Sample 100.2, XPL). (c) Radial cracks around quartz inclusion in garnet
(Sample 5.38, PPL). D) Omphacite next to garnet (Sample, 5.39A, XPL). (e) Coarse-grained zoisite with omphacite and rutile
inclusions (Sample 5.30, XPL). (f) Phengite rimmed by zoisite (Sample 5.5, XPL). (g) Parallel fractures in garnet and chlorite in the
matrix (Sample 7.1, PPL). H) Zoned amphibole (Sample 7.1, PPL).
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Fig. 5. Back scattered images of Shanderman eclogites. (a) actinolite riming glaucophane inclusions in omphacite, (b) omphacite
and albite inclusions in zoisite, (¢) paragonite changing to albite, (d) atoll garnet with phengite, (e) albite and chlorite around
garnet (f) titanite around rutile.
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contain no quartz in the matrix. Accessory minerals
are plagioclase, opaque minerals, apatite and calcite.

Serpentinized peridotites

The studied peridotite samples are from the Shander-
man valley (Fig. 2). They are composed of clinopy-
roxene, orthopyroxene, olivine, spinel (chromite) and
serpentine. Orthopyroxene is almost entirely con-
verted to serpentine minerals, whereas clinopyroxene
and olivine are relatively fresh and converted to ser-
pentine minerals primarily at the rims and along
cracks. Clinopyroxene is rimmed by a brownish min-
eral that is probably clinohumite. The main rock tex-
tures are pseudomorphic (mesh, Dbastite and
hourglass) and non-pseudomorphic (interpenetrating
and interlocking). Considering the mineral assem-
blages, the protoliths are mainly harzburgite and to
lesser extent, lherzolite. Serpentine minerals are
fibrous chrysotile and lizardite.

MINERAL CHEMISTRY OF ECLOGITES

Six representative samples of eclogite were chosen for
microprobe analysis. Analyses were obtained using a
JEOL 8800 electron microprobe at Potsdam Univer-
sity, Germany, at 15 kV and 20 nA with a 2-10 um
beam. Operating conditions were 15 kV and 10—
20 nA specimen current. Counting time was 10-30 s
on peaks and half-peak on background. Natural and

synthetic standards (Fe,Os;[Fe], rhodonite [Mn], rutile
[Ti], MgO [Mg], wollastonite [Si, Ca], fluorite [F],
orthoclase [Al, K] and albite [Na]) were used for cali-
bration.

Garnet

Zoned garnet in the Shanderman eclogites shows
spessartine-rich cores, except for very small grains
that seem to be a part of larger garnet cut at the
crystal edges (Fig. 6). Garnet 1 (cores) show higher
grossular and almandine and lower pyrope contents
than garnet II (rims) (Table 2). Fe content increases
from core to rim but at the rims shows an abrupt
decrease. Two fine-grained samples, (5.38 and 100.2)
contain garnet with compositions of almy;.s7grs13 3,
PTP4-345PSo-9 and almys 63818 16-37PTP4-348PS0-15
respectively. The garnet compositions in medium to
coarse-grained eclogites are almy;_s92rs»3_31Prpe.—29
spso_g (sample 16.16) and almyg 50218y 24PTP16-28SPSo-1
(sample 5.39A). Xy [FMg/(Mg + Fe’")] increases
continuously from core to the rim. The lowest Xy,
content for Grt I is 0.08 (sample 100.2) and the high-
est Xy, content for garnet II is 0.42 (sample 5.38)
(Table 1). Small garnet has low Mn content even in
the core (Fig. 6). It is rich in almandine, grossular
and pyrope. For example, small garnet in sample
100.2 has a composition of almyg grs;7_2prpi3—
335pso_i. This shows that they correspond most likely
to the outer part of larger garnet.

Table 2. Representative garnet analyses from the Shanderman eclogites.

Wt % 16.16 100.2 100.2 5.39A 5.39A 5.38
Small grain Coarse grain Coarse grain Small grain

Core Rim Core Rim Core Rim Core Rim Core Rim Core Rim
SiO, 37.93 38.25 38.14 39.54 37.69 39.22 38.21 39.4 38.6 38.48 37.92 38.87
TiO, 0.22 0.07 0.10 0.027 0.21 0.01 0.11 0.05 0.11 0.03 0.13 0.02
AL O, 21.80 22.33 21.98 22.60 21.66 22.63 22.14 22.32 22.12 2291 21.73 23.02
FeO 24.08 26.46 29.45 23.57 20.88 24.31 28.12 23.30 25.6 23.85 22.81 23.93
MnO 3.63 0.11 0.31 0.2 6.62 0.25 0.68 0.20 0.50 0.19 3.96 0.15
MgO 233 5.67 3.38 8.87 0.93 9.09 4.09 7.53 5.50 8.20 1.06 9.08
CaO 11.05 8.28 8.48 6.52 13.10 6.05 8.55 8.13 9.19 7.45 13.54 6.45
Na20 0.04 0.03 0.035 0.02 0.01 0.00 0.02 0.02 0.06 0.03 0.00 0.02
K>O0 0.01 0.01 0.00 0.005 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00
Cr,04 0.00 0.18 0 0.00 0.02 0.00 0.00 0.24 0.16 0.01 0.00 0.00
Sum 101.09 101.39 101.87 101.35 101.12 101.56 101.92 101.19 101.85 101.16 101.15 101.54
Si 594 5.89 593 5.96 593 591 591 5.97 591 5.84 5.95 5.86
Ti 0.03 0.01 0.012 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.02 0.00
Al 4.02 4.05 4.02 4.01 4.02 4.02 4.03 3.99 3.99 4.10 4.02 4.09
Fe 3.15 3.41 3.82 2.97 2.75 3.06 3.63 295 3.28 3.03 2.99 3.01
Mn 0.48 0.01 0.04 0.02 0.88 0.03 0.08 0.02 0.06 0.02 0.53 0.02
Mg 0.54 1.30 0.78 1.99 0.22 2.04 0.94 1.70 0.12 1.85 0.25 2.04
Ca 1.85 1.37 1.41 1.05 221 0.97 1.41 1.32 1.51 1.21 2.28 1.04
Na 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00
K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cr 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00
Xmg 0.15 0.28 0.17 0.41 0.08 0.41 0.21 0.37 0.28 0.39 0.08 0.41
Alm 52.03 55.30 62.7 48.8 44.84 49.0 59.2 49.2 52.8 48.4 49.20 48.2
Prp 9.06 21.69 13.1 332 3.65 34.1 15.7 28.4 21 31.0 4.11 34.0
Sps 8.02 0.23 0.7 0.4 14.70 0.5 1.5 0.42 1.1 0.4 8.77 0.3
Gau 30.88 22.77 23.5 17.6 36.81 16.3 23.6 22.0 252 20.2 37.92 17.4
Sum 100 100 100 100 100 100 100 100 100 100 100 100

Normalized to 24(0), Xy, = Mg/(Fe? " +Mg).
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Clinopyroxene

Clinopyroxene in different samples have different
jadeite content. The range of jadeite content in clino-
pyroxene from all samples analysed is 22-53.6%
(Table 3; Fig. 7a,b). Peak metamorphic clinopyroxene
in the matrix has a composition of jdy, s4di +
hd40,68ae0,14 with XMg:0367068 NazO content
varies from 3.9 to 7.7 (wt%) (Table 3). The jadeite
content of small omphacite inclusions in coarse
(~0.7 mm) zoisite (Fig. 7b) is similar to that in
matrix clinopyroxene. Its composition is jdz7.4730d1 +
hd47,57'd€1‘1,6.7, XMg = 0.42-0.5 with NazO content of
6.2-7.5 (Wt%). The matrix omphacite is fine- to med-
ium-grained (<1 mm up to 5 mm in size). Omphacite
in sample 16.16 has the lowest jadeite content (av.
31.3%). In contrast, samples 5.47 and 5.38 show the
highest jadeite contents (av. 48 and 48.6%, respec-
tively) (Table 3). The jadeite content decreases from
core to the rim, but some clinopyroxene does not
show any systematic variations.

Amphibole

Amphibole is a major phase in almost all samples
and displays a number of compositional and textural
relations. Both relatively fresh and retrogressed
eclogites contain sodic amphibole, tremolite, actino-
lite, tremolitic hornblende, magnesio-hornblende,
pargasitic-hornblende, tschermakitic-hornblende,
edenitic-hornblende and barroisite (Table 4; Figs 5a
& 8). Some amphibole is zoned with pale-green cores
and darker green rims (Figs 8 & 9a). Al,O3, Na,O

(@

and FeO increase and MgO and SiO, decrease from
core to the rim (Table 4; Fig. 9a—). The Ca content
of calcic amphibole ranges from 1.63 to 1.35 (p.f.u.)
from core to the rim. In sample 5.39A, the Ca con-
tent (B site) increases from the core (1.67 p.f.u.)
towards the rim (1.73 p.f.u.). The Na content (A
site) of amphibole decreases from core to rim (0.52
to 0 p.fu) except for sample 5.39A (0.27 to
0.46 p.f.u.). Sodic-calcic amphibole is barroisite (as
part of zoned amphibole). Alkali amphibole is glau-
cophane with low Ca (0.20-0.25 p.fu.) and Al'Y
(0.16-0.19 p.f.u.) contents (Fig. 8a). The Xy, (=Mg/
(Mg + Fe?™) of glaucophane is 0.91-0.93 for sample
5.74 and 0.80-0.88 for sample 5.38, decreasing from
core to the rim. The highest Xp.>" (= Fe’')
(Fe* "+ AIYY) for sodic amphibole (based on stoichi-
ometry) is 0.17 (Table 3). The Xg.' " of prograde
sodic amphibole (inclusions in garnet) is 0.18 for
glaucophane and 0.44 for crossite (Table 4). The
Xmg of sodic amphibole from the matrix (>0.8) is
higher than that for inclusions in garnet (<0.71)
(Table 4; Fig. 8). Glaucophane (Amp I) inclusions
(Fig. 8b) in omphacite shows lower Xy, in the core
in comparison with the core compositions of glauco-
phane (Amp II) from the matrix. This glaucophane
is rimmed by actinolite (Amp IV). There is a good
correlation between the decrease in FeO in garnet
and its increase in glaucophane from core to the rim
(Fig. 10). Omphacite does not exhibit clear zoning
(Fig. 10). Sharp borders and the lack of omphacite
inclusions in glaucophane, show that glaucophane
was not formed by consumption of omphacite during
retrogression.

(b)

coarse Grt

Mg Fe’' + Mn
(© coarse Grt (d) small Grt
@ le
£ * Mg |
é A Mn
Fig. 6. (a) Ternary plots of garnet £ H
composition; (b) Back-scattered electron Q\Z B rim
image of garnet in sample 100.2, the line =
shows microprobe traverse analyses. (c) = [ core
Coarse garnet compositional zoning profiles [J mantle l
for Ca, Mg, Mn, Fe (d) Zoning profile of " P — "
small garnet in same sample (100.2). rim 432 um rim
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In matrix Zo* Zo*
Wit%/sample 1616 1616 1002 1002 539A  539A 538 538 547 547 5.39 5.47
SiO, 5584 5671 5627 5578 5598  56.21 5547 5561 5542 5538 5631 5621
TiO, 0.04 0.04 004 0.04 0.05 0.04 002 001 004 0.04 0.00 0.04
ALOs 8.65 10.06 1095 11.21 10.67 10.62 12.51  13.04 1241 1212 10.51 11.00
FeO 4.79 2.83 2.84 2.43 3.01 2.87 3.49 4.20 3.34 2.73 3.05 5.21
MnO 0.00 0.00  0.03  0.04 0.04 0.0l 000 0.00 0.00 0.00 0.00 0.00
MgO 9.24 1001  9.06  9.44 9.50 927 782 684 7.63 857 9.59 772
CaO 1478 1491 14.04 1433 1449 1431 11.87 1053 11.78 13.11 14.58 1238
Na,O 5.98 5.78 6.44 6.15 6.45 6.57 7.63 8.54 7.63 7.12 6.22 7.48
K,0 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00
Cry04 0.95 023 0.00  0.00 0.05 0.12 000 001 003 001 0.08 0.02
Sum 100.27  100.57 99.67 99.42 100.25 100.02 98.81 98.78 98.29 99.08 100.35 100.06
Si 1.99 200 200 198 1.97 199 198 198 198 197 1.99 1.99
Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Al 0.36 0.42 0.46 0.47 0.44 0.44 0.53 0.55 0.52 0.51 0.44 0.46
Fe 0.14 0.08  0.08  0.07 0.09 008 010 0.2  0.10 0.08 0.09 0.15
Mn 0.00 0.00  0.00  0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00
Mg 0.49 0.53 0.48 0.50 0.50 0.49 0.42 0.36 0.41 0.45 0.50 0.41
Ca 0.57 0.56 0.53 0.55 0.55 0.54 0.45 0.40 0.45 0.50 0.55 0.47
Na 0.41 0.40 0.44 0.42 0.44 0.45 0.53 0.59 0.53 0.49 0.43 0.51
K 0.00 0.00  0.00  0.00 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00
Cr 0.03 0.0l 0.00  0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00
Xme 0.86 0.86 0.85 0.87 0.92 0.90 0.88 0.91 0.86 0.93 0.87 0.83
Jd 35.94 40.26  44.69 43.13 40.29 4224 4851 5095 4993 4533 41.73 44.82
Di 49.66 51.56  47.04 49.71 50.92 49.28 41.29 36.76  40.21 46.67 49.45 39.97
Hd 8.25 8.18 827 716 433 533 539 371 638 348 7.67 8.44
Ae 6.15 0.00  0.00  0.00 445 315 481 858 347 452 1.15 6.78
Normalized to 6(0), Xy, = Mg/(Fe*" + Mg); *Zo, inclusion in Zo.
(a) diopside + hedenbergite
R
in matrix }-:;
E
=
SMphacite -
20,
jadeite 50 aegirine
(b) diopside + hedenbergite
(=]
N
=
cpx in Zo té-\
omphacite @
=
B
L=
20
jadeite 50 acgirine — 300 L

Calcic amphibole inclusions in garnet have lower
Xmg than the inclusions in zoisite (>0.8). Amphibole
inclusions in zoisite are characterized by Fe and Al

Table 3. Representative pyroxene analyses
from the Shanderman eclogites.

Fig. 7. (a) and (b) Ternary plots (after
Morimoto et al., 1988) of omphacite
composition in matrix (a) and as inclusions
(b); see Table 3 for sample numbers. Back-
scattered electron and photomicrograph of
the analysed omphacite in matrix and as
inclusion in zoisite are shown.

increase and Mg and Si decrease from core to the
rim. From peak amphibolite facies amphibole (Am
I) to greenschist facies amphibole (Amp I1V), AI!
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Fig. 8. Compositional variations of amphibole in Shanderman eclogites (diagram of Leake, 1978), (a) Amphibole in matrix (b)

Amphibole inclusions in garnet, omphacite and zoisite.

and Na (M4) approaches its lowest values. Some
zoned calcic amphibole in the matrix (sample 7.1)
shows an increase in Al and Fe and a decrease in Mg
contents from core to the rim (Fig. 9a-c).

Zoisite and clinozoisite

All eclogite samples contain zoisite and clinozoisite.
Zoisite is more abundant than clinozoisite. It is coarse-
grained (~1 cm) and contains peak metamorphic
mineral inclusions (Fig. 5b). Zoisite has 0.05-0.49

Fe’* (all Fe assumed to be Fe’"), 2.42-2.95 Al and
1.79-2.10 Ca p.fu. (Table 5). The Fe*" content
increases from core to the rim in contrast with Al and
Mg contents, which decrease towards the rims
(Fig. 9d-f). Al,Fe (=100*Fe'/(2-Al + Fe")) is ~26.7-54
(mol.%) and increases from core to the rim. Zoisite
that is coarse-grained and aligned parallel to the
foliation has lower Al,Fe value than zoisite grains that
cut foliation. The value of Al Fe is low (<44.8 mol.%)
for zoisite and clinozoisite inclusions in garnet
(Table 95).
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Fig. 9. Back-scatter images of amphibole o -
and zoisite (Sample 7.1). The lines locate = é
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Fig. 10. Compositional zoning profiles for omphacite, garnet and glaucophane.

a wide range of composition (Si = 3.36-3.46 p.f.u.)
(Table 5). It is zoned with higher Si in the core.
White mica is present in all samples. In foliated sam- Phengite has low Na/(Na + K) ratios (0.08-0.11) and
ples, mica, amphibole and epidote form the main  high Xy, that varies from 0.83 to 0.88. Phengite
foliation. Phengite is smaller than paragonite and has inclusions in garnet have Si contents of 3.42—

White mica
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Fig. 11. Diagram of Si v. Xy, (p.f.u) for white mica. Samples with low Xy, and high Si content are phengite and the rest are
paragonite. (a) White mica in matrix (b) Inclusions in garnet and amphibole.

3.45 p.fiu., Xy varies between 0.84 and 0.85 and
Xna from 0.07 to 0.11. The paragonite content of
phengite inclusions is <11 mol.% (Table 5). Parago-
nite in the matrix shows low Si contents (3.05—
3.12 p.fu), high Xy, (0.88-0.99 p.fiu.) and Xy,
(0.37-0.69 p.f.u.) (Table 5; Fig. 11). The Si content,
Xmg and Xy, decrease from core to rim. Paragonite
inclusions in garnet have low Si contents, which
increase from core to the rim (2.78 to 3.02 p.f.u.)
(Fig. 11). Paragonite inclusions in matrix amphibole
have higher Si contents than inclusions in garnet.
Breakdown of paragonite produced albite (Table 5).
Mg- and Fe-celadonite is a result of Mg (Fe)
Si = AIY' AI'"Y substitutions. When the paragonite
content of phengite is high, the celadonite content is
typically low. Mg-celadonite contents in phengite are
up to 38 mol.%, but paragonite contents are negligi-
ble (Table 5). There are two generations of white
mica: coarse patches and fine-grained. Coarse-grained
white mica is paragonite that partially reacted to
albite locally (Fig. 5c). Paragonite was stable at the
peak of metamorphism (Fig. 5¢). Small white mica
grains are phengite. There are few phengite inclusions
in garnet (Grt I). Phengite occurs as cores to atoll
garnet in some sample (Fig. 5d).

Other minerals in eclogite

Chlorite replacing garnet in the Shanderman eclogites
(Fig. 5e) is Mg-rich and does not exhibit a wide com-
positional range. The Xy, is 0.65-0.68, Al contents
are 4.78-4.90 and Si contents are 5.4-5.8 p.f.u.
Albite-rich plagioclase is a secondary phase in the
rocks. Some plagioclase crystals occur adjacent to
paragonite and others next to omphacite. Titanite
mantles rutile (Table 5). Rutile in pyrope-rich garnet
rims (II) and in the matrix with a thick rim of titanite
(Fig. 5f) is considered as a peak, eclogite facies
phase. Quartz, calcite and iron oxides are present in
the Shanderman eclogites. Zanchetta et al. (2009)
reported aragonite from the Shanderman eclogites
but it was not found in our samples.

© 2013 John Wiley & Sons Ltd

WHOLE-ROCK CHEMISTRY OF ECLOGITES

Whole rock major and trace element analysis was
undertaken on 41 Shanderman eclogite samples
(Table 6). SiO, content varies from 39.8 to 54 wt%,
clustering around 45-52 wt%, while TiO, is ~1 wt%
and Na,O varies from 0.37 to 5 wt%. As the major
elements may change during hydrothermal alteration
and high grade metamorphism, the immobile minor
and trace elements have been used as protolith indi-
cators. Trace-element discrimination diagrams (Floyd
& Winchester, 1975) show a basaltic (ocean tholeiite)
protolith for the Shanderman eclogites (Fig. 12a,b).
Most samples fall in the MORB field of the Ti-Zr-Y
and Ti-Zr-Sr plots (Fig. 12c,d), and in the normal
type MORB field in the Nb-Zr-Y plot (Fig. 12e). The
V content ranges between 190 and 368 ppm except
for one sample with V content of 518 ppm. A TiO,
v. V diagram (Shervais, 1982) shows oceanic floor
basalts (Ti/V = 20-50) as likely protolith of Shander-
man eclogites (Fig. 12f).

P-T CONDITIONS OF METAMORPHIC STAGES

Based on petrographic observations and microprobe
analyses, prograde blueschist facies, peak eclogite
facies, retrograde amphibolite facies and probable
retrograde greenschist facies were recognized. The
P-T conditions and path have been determined from
the assemblages of the different stages (Fig. 13) using
conventional thermobarometry and pseudosection
analysis. Also mineral inclusions in different parts of
the zoned garnet are used for determining P—7 condi-
tions of the prograde metamorphic path.

Prograde P-T conditions

The pre-eclogite garnet is spessartine and grossular-
rich (Fig. 10), and has inclusions of prograde zoisite.
Sodic, sodic-calcic and calcic amphibole formed at
pre-eclogite and post-peak conditions. The presence
of glaucophane (Amp I) as inclusions in garnet rims
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Table 6. Representative whole-rock

Sample  16-10 18-6 16-12 242 16-11 7-1 17-1 537 5-38 100-2 | .
composition of the Shanderman eclogites.

Si0, 030 4880  SLI0 4520 5440 4870 4660 950 s34 soq0 Major oxides in wt% and trace elements in

TiO, 1.03 1.02 1.09 0.81 0.96 1.02 0.94 1.08 118 113 bpm.

ALO; 16.20 16.30 16.00 17.50 15.20 19.20 15.10 14.40 15.70 15.20

Fe,0; 11.52 11.35 10.56 10.05 9.39 10.11 10.12 15.16 10.68 10.84

MnO 0.16 0.28 0.11 0.23 0.17 0.19 0.14 0.39 0.13 0.18

MgO 6.57 6.06 7.16 579 5.67 572 7.71 15.13 5.89 6.77

Ca0 7.16 8.02 6.21 12.45 7.25 485 13.03 8.70 7.34 9.58

Na,O 470 3.49 4.24 3.59 4.67 231 236 0.73 3.79 3.61

K20 0.15 0.53 032 0.29 0.17 4381 0.13 0.06 0.41 0.27

P,0s 0.02 0.08 0.03 0.42 0.07 0.02 0.09 0.05 0.08 0.08

LOI 2.03 3.98 291 3.50 1.60 275 3.67 441 122 1.48

Total 99.85 99.83 9976 99.85 99.79  99.66  99.86  99.85 99.84  99.85

Ba 20 84 48 53 58 123 20 3 55 30

Cr 248 268 254 25 258 69 306 171 101 89

Ga 19 17 20 21 13 19 19 8 16 16

Nb 2 2 3 2 4 9 3 2 4 2

Ni 83 107 110 63 82 41 12 162 71 54

Rb 3 4 3 3 3 69 3 3 3 3

Sr 70 83 96 217 93 63 128 19 45 60

\% 274 265 297 294 282 230 304 298 376 324

Y 27 27 24 28 23 37 25 60 29 27

Zn 86 71 88 54 7 59 72 S8 25 56

Zr 66 64 69 58 68 152 63 7 73 71

La 9.1 12 9.1 1.5 4.1 83.1 10.6 48 15.5 11.4

Ce 9.9 1.5 8.5 10.9 48 60.3 10.3 46 12.5 114

Pr 10.4 12.1 9.4 1.6 42 547 10.5 45 114 11.9

Nd 10.9 12.8 9.9 123 48 56.5 1.5 54 12.5 12.9

Sm 13.8 16.8 13.1 16.6 6.2 33.8 14.7 12.8 14.8 16.1

Eu 13.9 17.5 142 216 5.9 25.9 16.6 258 14.9 16.9

Gd 15.6 18 15.1 18.2 6.8 313 16.3 28.0 16.6 17.7

Tb 18.1 19.3 159 18.2 8.8 318 17.4 318 18.5 16.2

Dy 16.8 18.5 16.0 16.4 6.6 25.6 16.1 35.1 183 17.9

Ho 16.3 18.2 15.9 16.3 6.1 23.0 15.9 36.6 17.7 16.9

Er 17.2 19.1 16.8 17.3 6.7 233 16.7 41.0 18.8 17.9

Tm 16.4 18.1 16.3 16.5 6.4 23 15.6 40.3 19.0 17.2

Yb 16.4 18.5 16.7 16.9 6.4 2.6 16.0 437 18.5 17.4

Lu 16.2 18.6 16.9 17.0 6.6 229 16.0 44.1 18.6 17.5

Sc 39.7 41 413 336 19.4 2 39.7 46.9 339 40.1

and omphacite, as well as in the matrix, shows that
the Shanderman eclogites experienced blueschist
facies conditions during prograde metamorphism.
Rutile inclusions in garnet cores are attributed to the
pre-eclogite stage. Minerals such as amphibole (sodic,
sodic-calcic and calcic), quartz, white mica, albite,
ilmenite, epidote, rutile, titanite and =+ chlorite are
preserved as inclusion in garnet. The absence of sodic
pyroxene at this stage indicates a pressure below
11 kbar at 400-550 °C (Fig. 14a). The presence of
titanite with rutile at pre-peak conditions indicates a
wide temperature range. The P-T condition of the
prograde blueschist stage is restricted to the albite
stability field in the high temperature portion of the
epidote blueschist facies. Considering the garnet
cores, the maximum temperature is limited by the
garnet producing reaction, with increasing tempera-
ture within a pressure range 6-11 kbar. That sets an
upper temperature limit for the prograde assemblage
of ~450-500 °C (e.g. Maruyama et al., 1986; Evans,
1990; Okay et al., 1998).

Peak P-T conditions

Pyrope-rich garnet grew at the eclogite facies peak of
metamorphism (Fig. 10). Zoisite was stable, as indi-
cated by Na-rich clinopyroxene inclusions. Ompha-

cite formed in the eclogite facies with some crystals
containing inclusions of quartz, rutile, paragonite
and glaucophane. Glaucophane was stable (Amp II)
in the eclogite facies (peak stage) metamorphism.

Geothermometry was carried out using garnet-
clinopyroxene thermometry. The Fe’* content of
omphacite was calculated as Fe’' = Na(M2) +
(AI"Y(AIY' + Ti)). The -calibration of Raheim &
Green (1974) on four samples gave 610 °C, while the
Ellis & Green (1979) calibration gave an average of
616 °C, which are higher than the 592 °C value from
the Powell (1985) calibration. The calibrations of
Ellis & Green (1979) and Krogh (1988) yiclded
642 °C and 572 °C (£100 °C) for sample (5.38),
respectively. This temperature variation, apart from
the nature of different calibrations, might be caused
by the uncertainty in the estimation of the Fe?')
Fe" ratio of omphacite (e.g. Tsujimori ez al., 2006).
Estimated pressures using the jadeite content of om-
phacite (Holland, 1979, 1980, 1983) are 13-15 kbar
(Fig. 14a), while the jadeite content of omphacite
inclusions in zoisite (Holland, 1979, 1980, 1983) gives
15 kbar (uncertainty <2 kbar). Considering the
absence of albite in the paragenesis, these are mini-
mum pressures.

A pseudosection was calculated using THERIAK-
DOMINO software (de Capitani & Brown, 1987)

© 2013 John Wiley & Sons Ltd
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Fig. 13. Mineral assemblages for different metamorphic stages of Shanderman eclogite.

with the database of Berman (1988, updated 1992)
for sample 5.38, because this sample contains the
maximum number of phases in equilibrium during
peak metamorphic conditions.

The pseudosection shows that peak minerals (Grt,
Omp, Pg, Gln, Zo) are restricted to 13-23 kbar and

© 2013 John Wiley & Sons Ltd

500-570 °C (Fig. 14b). The maximum pressure is
defined by the stability fields of paragonite and glau-
cophane. Amphibole breaks down with increasing
pressure at 24-25 kbar in the range 530-700 °C (Poli
& Schmidt, 1995). The lower pressure of this stage is
limited by the reaction Jd + Qz = Ab corresponding
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Fig. 14. (a) P-T diagram showing P-T path (dashed heavy line) for the Shanderman eclogitic rocks. The dashed grey line marks
the epidote-blueschist field (EB) from Evans (1990). Black lines 1 and 2 represent garnet-clinopyroxene thermometry for sample
5.38 based on Krogh (1988) and Ellis & Green (1979) calibrations, respectively. (b) The equilibrium phase diagram for sample
5.38, calculated by the means of THERIAK-DOMINO software (de Capitani & Brown, 1987). Bulk chemistry of the sample is
shown as normalized major element content. The shaded field on the diagram shows peak mineral paragenesis for the Shanderman
eclogites. (c) The diagram is contoured in isopleths of X;q (clinopyroxene, black boxes), and Xpy,, (garnet, white boxes). The
isopleths for the studied sample cross at pressure of ~16 kbar and temperature of ~650 °C (asterisk).

to 15 kbar at 600 °C. Based on jadeite content of
omphacite, the maximum pressure is restricted by
Pg=1d (52) + Ky to ~20 kbar and minimum pres-
sure ~15 kbar (Fig. 14a). The P-T conditions of the
eclogite facies is determined from isopleths of
X15a(Cpx) and Xpy,(Grt), giving ~16 kbar and ~650C
for the peak of metamorphism (Fig. 14c).

Post-peak P-T conditions

During the retrograde evolution, garnet was rimmed
by amphibole. Based on textural and phase rela-
tions, some zoisite and clinozoisite formed in the
epidote amphibolite and greenschist facies, after
peak of metamorphism. A later generation of zoisite
formed at lower amphibolite-upper greenschist
facies, based on the fact that some crystals cross-cut
the main foliation. Calcic-amphibole (Amp Il and
IV) occurs as zoned and fibrous amphibole types
(Amp 1V) at greenschist facies conditions. Eclogite
passing through amphibolite and greenschist facies
conditions during decompression is prone to retro-
grade reactions and formation of low P-T hydrous
minerals. In most cases these reactions are not equi-
librium reactions and therefore the exact P-T condi-
tions of the retrograde path during exhumation
cannot be reconstructed based on the retrograde
mineral assemblages. Ambiguous textural relations
among retrograde minerals add to the problem. The
amphibolite stage assemblage is amphibole, plagio-
clase, phengite, epidote and titanite. Zoned calcic
amphibole comprises tschermakitic-, edenitic and
magnesio- hornblende and tremolite- and actinolitic
hornblende compositions in zoned grains. Albite

mole fraction in plagioclase is 0.97. The presence of
hornblende in equilibrium with epidote is indicative
of the epidote-amphibolite facies. Hornblende Na in
My site (or crossite content) barometry and Ti con-
tent thermometry on the cores of calcic amphibole
reveals pressures of ~5 kbar (Brown, 1977) and tem-
peratures of ~470 °C (Colombi, 1989). There is a
slight decrease of pressure and temperature from
core towards the rim. Minerals such as chlorite,
zoisite, clinozoisite, albite, tremolite-actinolite, quartz
and titanite indicate either greenschist facies mineral
assemblages or they are products of a late pervasive
alteration. Since the textural relationships between
these late minerals in the retrogressed eclogites are
not clear, it is not possible to define a probable local
equilibrium to estimate the P-T condition of their
formation.

Coarse phengite with quartz and epidote inclusions
is visible inside atoll garnet, which probably formed
during exhumation (e.g. Radvanec et al., 1994; Gu
et al., 2002) by fluid influx. Along the retrograde
path towards the greenschist facies, or by a late per-
vasive fluid assisted alteration, albite and chlorite
developed around garnet (e.g. sample 100.2), similar
to those observed by Fitzherbert et al. (2005).

DISCUSSION AND CONCLUSIONS

The Shanderman eclogites crop out as blocks up to
two metres in size enclosed within serpentinite and
serpentinised peridotite in the Talesh Mountains of
the Alborz range in northern Iran. Other rock types
are metabasic rocks including greenschist, epidote
amphibolite and metagabbro. Eclogite-bearing serp-

© 2013 John Wiley & Sons Ltd
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entinites were emplaced by reverse faults. Although
the outcrop of the eclogite-bearing serpentinites is
limited in the field (Fig. 2), along with the other rock
units in the area, they resemble an ophiolitic com-
plex. Scarcity of serpentinites and metabasic blocks is
a known feature for several occurrences of HP-LT
metamorphic oceanic crust in the Alps-Himalaya oro-
gen (e.g. Western Alps, Agard er al., 2009).

Magmatic rocks related to Palacotethys subduc-
tion and consequent closure crop out to the north of
the study area and can be taken as a possible evi-
dence for subduction of the Palacotethys oceanic
crust in northern Iran. This gives information both
on the location of the suture and direction of the
subduction. The exposures of some calcalkaline
intrusions in the Caucasus, west of Turkmenistan
and north east of Iran can be considered as a result
of Palacotethys subduction. If this is the case, a
northward subduction can be concluded for the clo-
sure of the Palacotethys Ocean in northern Iran, in
agreement with models proposed by Stampfli & Bo-
rel (2002), Stampfli & Kozur (2006) and Moix et al.
(2008).

The Late Carboniferous-Early Permian calcalkaline
intrusions and volcanism found in the Variscan
Alpine-Mediterranean domain is related to the north-
ward subduction of the Palaeotethys (Stampfli &
Borel, 2002). Such magmatic activity is reported to
the northwest of the Shanderman complex in the
Caucasus region (Rolland ef al., 2011). Northward
subduction-related magmatism and HT-LP metamor-
phic rocks in southern Georgia are dated at 303 Ma
(Carboniferous, Rolland ef al., 2011). Magmatic
activity and related metamorphic rocks from the Les-
ser Caucuses resulted from Palaeotethys (and Neote-
thys) northward subduction (Galoyan et al., 2009;
Rolland er al., 2009a,b, 2011). However, there is no
evidence for Cimmerian collision in northern Arme-
nia, whereas evidence for such a collision is reported
from Japan (Tsujimori & Itaya, 1999; Wintsch et al.,
1999; Tsujimori et al., 2000; Tsujimori, 2002), China
(Konstantinovskaia et al., 2003; Isozaki et al., 2010),
Thailand (Sone & Metcalfe, 2008; Aung, 2009; Ka-
mata et al., 2009), Tibet (Zhang et al., 2008; Yang
et al., 2009), Afghanistan (Brookfield & Hashmat,
2001), Iran (Majidi, 1978; Berberian & Berberian,
1981; Zanchetta et al., 2009) and Turkey (Stampfli &
Kozur 2006; Moix et al., 2008). Considering the age
of the Shanderman eclogites (315 Ma, Zanchetta
et al., 2009) and closure time for the Palaeotethys
Ocean (200-150 Ma), the Shanderman eclogites were
probably exhumed early during subduction, similar
to ‘Group 1’ exhumed subducted-oceanic crust of
Agard et al. (2009). Whole-rock composition of the
eclogites indicates that their protolith was oceanic
tholeiitic basalt of MORB type generated in an oce-
anic floor setting.

Eclogites preserve different stages of prograde,
peak and retrograde metamorphism. The presence of

© 2013 John Wiley & Sons Ltd

sodic amphibole, paragonite + epidote minerals in
garnet and clinopyroxene documents a prograde epi-
dote blueschist facies metamorphism during subduc-
tion. Glaucophane started forming at prograde
blueschist facies condition and remained stable in the
eclogite facies. Omphacite + garnet in the matrix
indicates eclogite facies metamorphism. At this stage
pyrope-rich garnet overgrew existing garnet. The sta-
bility of hydrous phases is interpreted as reflecting
high water activity at eclogite facies. The rocks have
experienced late (retrograde) amphibolite and green-
schist facies conditions during exhumation. This is
documented by zoned calcic amphibole and chlorite
in the matrix of some samples.

The estimated maximum pressure for the Shander-
man eclogites is ~20 kbar and the minimum pressure
is ~16 kbar. Temperatures around 554-656 °C were
estimated for the metamorphic peak. The peak P-T
conditions of the Shanderman eclogites indicate that
the Palacotethys oceanic crust was subducted to a
depth of <75 km in northern Iran. During exhuma-
tion, retrograde reactions were active and produced
amphibolite and greenschist facies phases. The pres-
ence of zoisite in amphibolite facies assemblage
shows that the P-T conditions of this stage corre-
sponded to epidote-amphibolite facies. The estimated
conditions indicate a clockwise P—T path. The Shan-
derman complex is taken as a fragment of the Upper
Palaeozoic European continental crust (Variscan belt,
e.g. Zanchetta et al., 2009), which was translated
eastward during the Permian along a dextral mega-
shear zone. In this model, the Shanderman high pres-
sure rocks are allochthonous fragments of
continental crust subducted to high depth (Zanchetta
et al., 2009). There is not much evidence for such a
megashear zone, and there is an age difference
between the eclogites (¢. 315 Ma, Zanchetta et al.,
2009) and the associated gneiss and micaschist of the
continental crust (c¢. 380 Ma, Crawford, 1977). Our
findings show that Shanderman eclogites have oce-
anic lithosphere protolith and mark the location of
the Palaeotethys suture in northern Iran. Petrogra-
phy, mineral chemistry and P-T estimates show that
the Shanderman eclogites were produced by subduc-
tion to a depth <75 km. This is in accordance with
the typical maximum pressure estimated for subduc-
tion of oceanic crust. According to review by Agard
et al. (2009), subducted oceanic crust rarely records
pressures >20-23 kbar.

Considering the position of the Shanderman eclog-
ites, the Palacotethys suture zone in Iran (Alborz
Mountains) is 200-500 km north of the Neotethyan
suture (Zagros Mountain) and wraps around the
south Caspian Sea (Axen et al., 2001).
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