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ABSTRACT Lawsonite-bearing metamorphic/metasomatic rocks form at high-pressure–ultrahigh pressure (HP–
UHP) and low-temperature (LT) conditions, commonly in Pacific-type subduction zones. The P–T
stability fields of lawsonite blueschists and lawsonite eclogites represent subfacies of the blueschist
and eclogite facies, respectively. Although the lawsonite–epidote transition boundary has a positive
Clapeyron (dP/dT) slope, the blueschist-to-eclogite transformation within the lawsonite stability field
in metabasaltic rocks is gradual and cannot be defined by a specific discontinuous reaction in P–T
space. The oldest occurrences of lawsonite-bearing blueschists are latest Neoproterozoic, suggesting
that subduction-zone thermal structures evolved towards the necessary LT conditions for lawsonite
formation only by the late Neoproterozoic. A clear difference in frequency between Phanerozoic
lawsonite and epidote blueschists does not exist, but our new compilation found a global lawsonite
hiatus in the Permian that is a robust indication of relatively warm subduction-zone thermal regimes.
Lawsonite eclogites have been confirmed from at least 19 localities; they are classified as L-
(lawsonite only), E- (lawsonite + epidote), and U-type (lawsonite + coesite). Complete preservation of
L-type lawsonite eclogites attending their return to the surface is uncommon. Rare evidence of
progressive eclogitization within the lawsonite stability field is preserved in some zoned garnets, as
growth isolates a significant volume of precursor phases and textures during incipient eclogitization.
Brittle fracturing and fluid infiltration are common during prograde eclogite facies metamorphism.
Certain lawsonite-bearing metasomatic rocks record multiple fluid-infiltration events. Significant
cooling and continuous H2O supply from the dehydrating oceanic plate to exhuming HP serpentinite
m!elange may cause lawsonite blueschist facies overprinting and prevent breakdown of lawsonite
during decompression. The subduction records of lawsonite blueschists and eclogites agree with
numerical modelling of subduction zones.

Key words: HP–UHP metamorphism; lawsonite blueschist; lawsonite eclogite; Pacific-type convergent
margins; progressive eclogitization.

INTRODUCTION

Blueschists and glaucophane-bearing low-temperature
eclogites have been documented for almost half a
century in the Earth’s Neoproterozoic–Phanerozoic
orogenic belts. As a key proxy of oceanic plate
subduction along a cold geothermal gradient marking
ancient convergent margins, these metamorphic rocks
have been intensively studied from various
viewpoints, and at scales ranging from single crystals
to mountain belts. In particular, understanding of
metamorphic processes involving the generation of
lawsonite [CaAl2Si2O7(OH)2!H2O] in subduction
zones is of considerable importance. Lawsonite
possesses a high H2O content (~11.5 wt% H2O), a
high-pressure stability limit (up to 8.5 GPa), a high
shear elastic anisotropy (74%), a high VP/VS ratio
(1.94), and a high Poisson’s ratio (r = 0.318) (cf.,
Sinogeikin et al., 2000), so lawsonite can potentially

serve as a geochemical and geophysical tracer (Abers
et al., 2013; Reynard & Bass, 2014). Research
interest in lawsonite-bearing metamorphic rocks has
not only included field geology, petrology,
geochronology and high-pressure experiments (e.g.,
Mulcahy et al., 2009; Davis, 2011; Martin et al.,
2011; Vitale Brovarone et al., 2011; Chantel et al.,
2012; Compagnoni et al., 2012), but current attention
also reflects their significance regarding geochemical
components of subduction-zone magmas, dynamics of
the subduction-zone channel overlying the descending
slab, and the rheology + seismology of the subducting
oceanic crust (e.g., Hacker et al., 2003; Bebout, 2007;
Dorbath et al., 2008; Hacker, 2008; Teyssier et al.,
2010; Abers et al., 2013; Cao et al., 2013; Kim et al.,
2013; Spandler & Pirard, 2013). However, much still
remains to be done for a more interdisciplinary
understanding of the lawsonite-forming Phanerozoic-
modern style of oceanic subduction.
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Many review articles and special issues related to
HP–LT metamorphism in Pacific-type subduction
zones have been published (e.g., Miyashiro & Banno,
1958; Ernst, 1963, 1972, 1973; Evans & Brown, 1986;
Dobretsov et al., 1987; Peacock, 1992; Maruyama
et al., 1996; Agard et al., 2009). In 2006, the first
author investigated the subgroup of eclogites that
contains lawsonite with a specific focus on their very-
low temperature record of the subduction process
(Tsujimori et al., 2006a). Further details on the
metamorphic evolution of lawsonite eclogites
worldwide were presented by Wei & Clarke (2011)
based on calculated phase equilibria for MORB
compositions. In this article, we update some new
insights regarding lawsonite-bearing eclogites, but we
also expand comparisons to lawsonite blueschists
from both our own data and the literature. Specific
foci in this review include (i) petrological aspects of
lawsonite-bearing metamorphic rocks, (ii) spatial and
temporal distributions of lawsonite-bearing
metamorphic rocks through Earth history, and (iii)
specific problems related to lawsonite-bearing rocks.

In this review, the term eclogite is used for any
metabasite in which almandine-rich garnet and
omphacite are present as an equilibrium assemblage,
regardless of their abundance, although the IUGS
Subcommision on the Systematics of Metamorphic
Rocks recommends that the term eclogite be
restricted to a plagioclase-free rock composed of >75
vol% of omphacite + garnet (Desmons &
Smulikowski, 2007). Throughout this study, mineral
abbreviations are after Whitney & Evans (2010).

PETROLOGICAL ASPECTS OF LAWSONITE-
BEARING METAMORPHIC ROCKS

General overview

According to the classic metamorphic facies concept,
lawsonite is an index mineral confined to blueschist
facies rocks (e.g., Miyashiro, 1973; Turner, 1981).
However, the existence of lawsonite eclogites led to
their recognition as a subfacies of the eclogite facies
based on both natural and experimental evidence
(Helmstaedt & Doig, 1975; Poli & Schmidt, 1995;
Maruyama et al., 1996; Okamoto & Maruyama,
1999). Lawsonite occurs commonly as prismatic and
tabular euhedral-to-subhedral crystals in various
regional metamorphic rocks – including metasomatic
rocks – formed within mainly Pacific-type orogenic
belts (cf. Tsujimori et al., 2006a); rare HP lawsonite
blueschists and UHP lawsonite-bearing eclogites have
been reported as xenoliths within rhyolitic tephra
deposits and kimberlitic pipes, respectively (e.g.,
Watson & Morton, 1969; Hoffmann & Keller, 1979;
Usui et al., 2003). Lawsonite typically shows
twinning on the {101} plane and rare sector growth
internal structure denoted as the {100}, {010} and
{001} sectors. Usually non-pleochroic, it commonly

is white, but rarely shows blue or pink colours due to
substitution of Fe3+ and Cr for Al; the diaphaneity
is transparent. Because of its hardness (7.5), high
density (3.09 g cm"3), and relatively great corrosion
resistance, lawsonite is well known as a detrital heavy
mineral useful for identifying provenance-specific
features in sandstones (e.g., Mange-Rajctzky &
Oberh€ansli, 1982; Mange et al., 2005).
The P–T stability fields of lawsonite and lawsonite-

bearing mineral equilibria have been determined in
numerous experimental studies (see Martin et al.,
2014). The minimum pressure stability of lawsonite is
defined by the decomposition reaction of laumontite
to Lws + Qz + H2O (Nitsch, 1968; Liou, 1971).
Pistorius et al. (1962) first confirmed the high-
pressure stability limit of lawsonite; they synthesized
Lws + Qz and Lws + Coe equilibria at pressures
above 2.3 GPa. The upper pressure stability of
lawsonite-bearing mineral assemblages reaches 8–
10 GPa at 750–900 °C (Pawley, 1994; Schmidt &
Poli, 1994; Poli & Schmidt, 1995; Schmidt, 1995;
Okamoto & Maruyama, 1999). The lawsonite
stability field covers a wide P–T range and overlaps
that of glaucophane (Fig. 1a). Lawsonite-bearing
metamorphic rocks mainly belong to the subfacies of
the blueschist and eclogite facies. However, lawsonite
also occurs in a transition zone between blueschist
facies and pumpellyite–actinolite facies rocks (e.g.,
Banno, 1998). Although Turner (1981) proposed the
lawsonite–albite–chlorite facies, we regard this
assemblage as the lowest grade of the lawsonite
blueschist facies because lawsonite-bearing mineral
assemblages without glaucophane (sensu lato) can
exist in lawsonite blueschist facies metabasalt (e.g.,
Hirajima, 1983; Tsujimori & Liou, 2007). In the very-
low grade lawsonite-bearing rocks of New Zealand,
morphological preservation of carbonaceous plant
macrofossils has been described (e.g., Galvez et al.,
2012).

Lawsonite blueschist facies rocks

The Lws + Gln paragenesis defines the lawsonite
blueschist facies; in the NCASH system, the
discontinuous reaction Lws + Ab (or Jd) = Zo + Pg
(or + Qz) + H2O defines the boundary between the
lawsonite blueschist and epidote blueschist facies
characterized by the Ep + Gln + Qtz paragenesis
(Evans, 1990). The lawsonite–epidote transition
boundary in the blueschist facies, including a narrow
transition zone, has a positive Clapeyron (dP/dT)
slope. As shown in the calculated phase diagrams for
MORB of Fig. 1b,c, if the rock is fully hydrated (i.e.,
saturated in H2O-rich fluid), metabasalts in the
lawsonite blueschist facies can retain at least 4.5 wt%
H2O in its solid phases; this is more than 1.5 wt%
greater than that of epidote blueschist facies rocks at
the same depth. However, this infers that formation
and preservation of lawsonite-bearing mineral
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equilibria at H2O undersaturation are strongly
controlled by H2O availability (see “lawsonite
paradox” by Clarke et al., 2006). The stability of
lawsonite-bearing mineral assemblages is also
controlled by the XCO2 of the fluid phase (Goto
et al., 2007; Poli et al., 2009). Moreover inasmuch as
high-oxidation state stabilizes epidote, the position of
the lawsonite–epidote phase boundary shifts to higher
pressures at elevated values of fO2 (e.g., Warren &
Waters, 2006; L!opez-Carmona et al., 2013).

In very low-grade lawsonite blueschist facies
metabasites, lawsonite typically occurs with chlorite,
glaucophane (sensu lato), and Na- and/or Ca-Na
pyroxene (Fig. 2a); lawsonite is also commonly
associated with pumpellyite, phengite, stilpnomelane
and rare actinolite. The Ti-bearing phase is generally
titanite, but rarely ilmenite. Igneous augite is a
common relict mineral (Fig. 2b). Irregular-shaped
domains/clots or veins consisting of aggregates of
lawsonite are common in undeformed/weakly
deformed rocks (Fig. 2c). Vein occurrences suggest

the precipitation and growth of lawsonite crystals
from a metamorphic fluid (e.g., Davis, 1960; Schertl
et al., 2012). In the Piemont zone of the Western
Alps, the Lws + Jd assemblage replacing igneous
plagioclase in metagabbro indicates lawsonite
blueschist facies metamorphism (Mevel & Kienast,
1980) (Fig. 2d).
The paragenetic sequence of Ca-Al hydrous silicates

(lawsonite, pumpellyite and epidote) has been
recognized as a tool to trace metamorphic field
gradients since Ernst (1963). Coexistence and/or
replacement textures among these three Ca-Al hydrous
silicates have been described from some lawsonite
blueschists. Metamorphic zones based on Ca-Al
hydrous silicates were mapped in coherent blueschist
units, such as the Cazadero area of the Franciscan
Complex (Maruyama & Liou, 1988), the Kamuikotan
Belt (Shibakusa, 1989) (Fig. 2e), and the Diahot
terrane of NE New Caledonia (Brothers, 1970;
Fitzherbert et al., 2003; Vitale Brovarone & Agard,
2013). With increasing metamorphic grade, epidote
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Fig. 1. (a) P–T diagram showing experimentally determined stability limits of lawsonite [Lws]- (red bold lines) and glaucophane
[Gln]-bearing (lavender lines) equilibria and modelled P–T paths (model D80 of Syracuse et al., 2010) for slab surfaces, both warm
(SW Japan/Nankai) and cool (NE Japan/Tohoku) subduction zones. [SP98] = Schmidt & Poli (1998); [S95] = Schmidt (1995);
[L71] = Liou (1971); [N68] = Nitsch (1968); [NK63] = Newton & Kennedy (1963); [M77] = Maresch (1977); [M86] = Maruyama
et al. (1986); [CG83] = Carman & Gilbert (1983); [CJ07] = Corona & Jenkins (2007); [J11] = Jenkins (2011); [B12] = Basora et al.
(2012). Red thin lines represent calculated high-temperature stability limits of lawsonite for a MORB bulk-rock composition in
NCFMASH+Mn system by Wei & Clarke (2011) [WC11] and this study (See the details in text). Metamorphic facies boundaries
(dotted lines) are after Maruyama et al. (1996) and Liou et al. (2004). A boxed P–T space (250–600 °C and 0.5–2.5 GPa) is
indicated as equilibrium phase diagrams for panels (b) and (c). P–T estimates of lawsonite eclogites by Tsujimori et al. (2006a) [T06]
and Wei & Clarke (2011) [WC11] are presented; light green – conventional thermobarometry, orange – garnet isopleths of P–T
pseudosection. For comparison, P–T estimates of various subduction/collisional metamorphic rocks (Maruyama & Liou, 2005)
[ML05] are also shown. Metamorphic facies abbreviations: BS = blueschist; AM = amphibolite; Lws-EC = lawsonite eclogite;
Ep-EC = epidote eclogite; Amp-EC = amphibole eclogite; Dry-EC = dry eclogite; GS = greenschist; EA = epidote–amphibolite;
GR = granulite; HGR = high-pressure granulite. (b) Equilibrium phase diagram calculated for the Gale et al. (2013) average
MORB composition in NCFMASH system with excess H2O and rutile–ilmenite oxygen buffer. The colour graduation level
represents H2O wt% of solids; blue-dotted lines are contour lines. Contours of density (g cm"3) are also shown as red dotted lines.
The thermodynamic modelling was performed using the Theriak/Domino software (de Capitani & Petrakakis, 2010) and the
internally consistent thermodynamic data set of Holland & Powell (1998); solution models and oxygen buffer suggested by
Konrad-Schmolke et al. (2008) were used. (c) P–T diagrams calculated for a hypothetical bulk-rock composition MORB+
(average MORB + 5 mole jadeite).
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appears in lawsonite-bearing metabasites; in some
case, a pumpellyite zone is present at lower grades
than the lawsonite zone and/or between lawsonite and
epidote zones. In general, the lawsonite–pumpellyite
transition occurs <~0.6 GPa at <~350 °C (e.g., Liou
et al., 1985).

Lawsonite also occurs in metamorphosed trench-fill
sedimentary rocks such as metagreywackes and Ca-
bearing metapelites of the lawsonite blueschist facies
(Fig. 2f–h). For instance, the occurrence of Lws + Jd is
a characteristic feature of Franciscan HP
metagreywackes (e.g., Ernst, 1993). Rare paragonite
has been identified in very low-grade lawsonite
blueschist facies metasedimentary rocks (Dalla Torre
et al., 1996; Potel et al., 2006). In continental
collisional zones (i.e., Alpine type), a lawsonite
blueschist facies mineral assemblage in peraluminous
metapelites and impure marbles typically contains Fe-
Mg carpholite [(Mg,Fe)Al2Si2O6(OH)4] or chloritoid
(e.g., Ganne et al., 2003).

Lawsonite eclogite facies rocks

The Grt + Omp (or Jd) + Lws # Gln paragenesis
defines the lawsonite eclogite facies. Compared with
lawsonite blueschist occurrences, the preservation of
lawsonite eclogites is rather rare; all lawsonite eclogites
belong to the Group C eclogites of Coleman et al.
(1965). Lawsonite eclogite facies mineral equilibria can
be divided into glaucophane-bearing and
glaucophane-free fields; those two fields are further
divided by the quartz–coesite transition (e.g., Wei &
Clarke, 2011). In general, rigid minerals such as garnet
are the best mineral containers; in fact, lawsonite
crystals in eclogites survive much more completely as
inclusions in garnet than in clinopyroxene (cf.,
Tsujimori et al., 2006a). However, these inclusions are

generally pseudomorphed by an aggregate of Czo/
Ep + Pg or Czo/Ep + Ky # Pg, suggesting that
lawsonite is decomposed by dehydration during
exhumation.
In the lawsonite blueschist-to-lawsonite eclogite

transition, lawsonite coexists with glaucophane,
omphacite and garnet (Fig. 2i). The preservation of
pristine lawsonite within almandine-rich eclogitic
garnet serves as a petrographic indicator used to
define lawsonite eclogite (Fig. 2j–l). Moreover,
eclogite facies lawsonite is generally associated with
rutile # rare ilmenite rather than with titanite
(Fig. 2l,m). Lawsonite eclogite facies mineral
assemblages are sensitive to bulk-rock composition,
especially to H2O saturation during metamorphism.
For example, Corsican lawsonite eclogites occur with
garnet-bearing lawsonite blueschist that formed
under the same metamorphic conditions of
~520 # 20 °C and 2.3 # 0.1 GPa; the contrasts in
mineral parageneses are due to different bulk-rock
compositions (Vitale Brovarone et al., 2011).
Moreover, the occurrence of lawsonite does not
always reflect lawsonite eclogite facies
metamorphism. Some Franciscan eclogites have been
partially overprinted by secondary lawsonite
blueschist facies mineral parageneses (Fig. 2n); these
are “false lawsonite-eclogites”. In some Ca-bearing
pelitic schists associated with lawsonite eclogites, the
assemblages Lws + Cld + Gln (Okay, 2002; Du
et al., 2011) and Grt + Gln + Lws # Jd # Cld (L€u
et al., 2012) are stable. Lawsonite has been also
described from some jadeitites and related
metasomatic rocks (e.g., Harlow et al., 2003;
Oberh€ansli et al., 2007). In such lithologies, lawsonite
grew together with jadeite by fluid precipitation
(Fig. 2o) and/or by metasomatic replacement of
precursor minerals.

Fig. 2. Photomicrographs showing occurrence of lawsonite in various rocks. (a) Lws + Chl pseudomorphs after plagioclase in
Lws-BS facies metamorphosed pillow basalt from Renge metamorphic rocks, SW Japan. The sample is characterized by a Na-
amphibole–free mineral assemblage: metamorphic pyroxene (m.Cpx) (jd<29) + Lws + Chl + Qtz (see Tsujimori & Liou, 2007)
[Plane-polarized light (PPL)]. (b) Lawsonite crystals aligned along the schistosity in a lawsonite blueschist from Kamuikotan Belt
(KMB), Hokkaido, Japan. The sample contains a Gln + Lws + Chl assemblage with relict igneous augite; jadeitic pyroxene occurs
in the same locality (see Takayama, 1986) [PPL]. (c) Lawsonite-rich domain in Lws BS facies metadolerite, South Motagua
M!elange (SMM), Guatemala [PPL]. (d) Lws + Jd assemblage pseudomorphing plagioclase of Lws-BS facies metagabbro [sample
336A of Ishiwatari (1985)], Roche Noire, Western Alps, France (see Mevel & Kienast, 1980) [PPL]. (e) Coexisting lawsonite and
epidote in the highest grade coherent blueschist unit of KMB. The sample contains Gln + Lws + Ep + Chl + m.Cpx (jd36–37) (see
Shibakusa, 1989) [PPL]. (f) Lws + Jd + Qtz assemblage in Franciscan metagreywacke, Pacheco Pass, California, USA (see Ernst,
1993) [Crossed polar light (XPL)]. (g) Euhedral-to-subhedral crystals of lawsonite in a Lws-BSfacies pelitic schist, Osayama
serpentinite m!elange, Japan (see Tsujimori & Itaya, 1999) [XPL]. (h) Lawsonite in a garnet-bearing pelitic schist from SMM.
Skeletal garnet contains lawsonite and rare prograde pumpellyite (see Tsujimori et al., 2006b) [PPL]. (i) Coarse-grained lawsonite
in a garnet-bearing lawsonite blueschist from SMM [PPL]. This sample contains a Gln + Lws + Omp + Grt + Phe + Rt
assemblage, resembling the Type-II lawsonite eclogite of Tsujimori et al. (2006b). (j) The rim of a prograde-zoned garnet
porphyroblast containing lawsonite in Type-I lawsonite eclogites from SMM (Tsujimori et al., 2006b) [X-ray (Mg) image].
(k) Abundant lawsonite inclusions within garnet from Type-I lawsonite eclogites from SMM (Tsujimori et al., 2006b) [XPL].
(l) Garnet porphyroblast containing folded inclusion trails of lawsonite from SMM (Tsujimori et al., 2006b) [PPL]. (m) Euhedral
lawsonite containing rutile in Type-II lawsonite eclogite of SMM (Tsujimori et al., 2006b) [PPL]. (n) “False lawsonite eclogite”
from New Idria, Franciscan Complex, California – eclogite overprinted by lawsonite blueschist facies mineral assemblage.
Lawsonite occurs in fractures of garnet and in matrix; the secondary lawsonite and jadeite partially replace matrix eclogite facies
omphacite (see Tsujimori et al., 2007) [X-ray (Ca) image]. (o) Parallel growth of coarse-grained lawsonite exhibiting twining in a
jadeite-bearing lawsonitite from SMM [XPL].
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Calculated phase diagrams for hydrated MORB
and hypothetical altered MORB (i.e., MORB+) are
shown in Fig. 1a,b. The exclusion of Mn to simplify
the system limits the P–T stability range of garnet-
bearing mineral equilibria. In this simplified system,
the garnet-in reaction in the lawsonite stability field
at ~450–480 °C separates the lawsonite blueschist
facies from the lawsonite eclogite facies. In the latter,
a chlorite-consuming reaction to form garnet releases
H2O gradually, and the rock becomes denser than
mantle peridotite (~3.4 g cm"3) at ~560–580 °C. It is
important that the changing H2O contents of solid
phases across the lawsonite–epidote transition are
more substantial than that of the chlorite-consuming
P–T region. Our modelling predicts that the stability
of two-pyroxene pairs (Omp + Aug or Omp + Jd),
which have been described in natural rocks (e.g.,
Tsujimori et al., 2005, 2006b, 2007), are characteristic
features of the transition between lawsonite blueschist
and lawsonite eclogite. Although natural evidence
casts doubt on the reliability of some thermodynamic
modelling for LT metamorphic rocks – especially
modelling with a fixed effective bulk-rock composition,
fluid activity, oxidation state, etc. – the chemographic
relations in P–T–X space are still helpful in order to
understand natural metamorphic parageneses. Na- and
Al-enrichment (i.e., increased jadeite component)
during HP metamorphism is suggested by the presence
of jadeite-, omphacite- and/or glaucophane-rich HP
metasomatic veins in some LT eclogites (e.g., Br€ocker
& Keasling, 2006; John et al., 2008); such metasomatic
alteration processes likely are promoted by introduced
slab fluids. In any case, our modelling shows that
the Omp+Jd assemblage appears in metasomatized
metabasalt (MORB+) rather than in MORB of
normal composition.

Lawsonite geochronology

Although it is not a common target mineral for
geochronology, Mulcahy et al. (2009) succeeded in
dating lawsonite using the Lu-Hf system; they
determined an age of 145.5 # 2.4 Ma for a blueschist
facies overprint after eclogite facies metamorphism in
the Franciscan Complex. More recently, Vitale
Brovarone & Herwartz (2013) reported a Lu–Hf
lawsonite age of 37.6 # 1.3 Ma for lawsonite blue
schist facies metagabbro from the Alpine zone of
Corsica. Gleissner et al. (2007) applied the Rb-Sr
method for lawsonite pseudomorphs (Ms + Ep + Ab)
in metabasalts from the Tauern Window of the
Eastern Alps; they interpreted an internal isochron
age of 29.82 # 0.52 Ma as the time of decompression
attending greenschist facies overprinting.

Classification of lawsonite eclogite types

Tsujimori et al. (2006a) proposed a classification of
lawsonite eclogites based on assemblages of

inclusions in prograde-zoned garnet; L-type grew
only within the lawsonite stability field, and E-type
records maximum temperature in the epidote stability
field. Wei & Clarke (2011) extended their
classification and added the additional U-type
lawsonite eclogite that contains coesite and/or its
pseudomorphs (Fig. 1a).

SPATIAL AND TEMPORAL DISTRIBUTIONS

Lawsonite eclogites: Updates

Since the Tsujimori et al. (2006a) review of 13
localities, we have become aware of at least six more
lawsonite eclogite occurrences; it should be noted
that localities with only textural evidence of
lawsonite eclogite facies have been also included. The
latest recognized include the following: North Qilian
(Zhang & Meng, 2006; Wei et al., 2009), Chinese
Western Tianshan (L€u et al., 2009, 2012; Tian &
Wei, 2013), Atbashi Ridge, Kyrgyzstan (Shatsky &
Usova, 1989), Xinxian, Western Dabie (Wei et al.,
2010), Monviso, Western Alps (Angiboust & Agard,
2010; Groppo & Castelli, 2010), and Kotsu/Bizan,
Eastern Shikoku (Tsuchiya & Hirajima, 2013).
Moreover Turkish (Sivrihisar) and Corsican
lawsonite eclogites have been extensively studied
(e.g., Davis & Whitney, 2006; Vitale Brovarone et al.,
2011). New Caledonian lawsonite eclogites were
classified as E-type (Tsujimori et al., 2006a), but a
recent study by Vitale Brovarone & Agard (2013)
inferred that the peak pressure of New Caledonian
lawsonite eclogite was at a pressure value exceeding
the lawsonite–epidote phase boundary. Lawsonite
eclogites for each locality newly recognized since
2006 are described below.

North Qilian

The early Palaeozoic Pacific-type orogenic belt
characterized by ophiolites, blueschists, calcalkaline
volcanics and granitic plutons occupies the suture
zone between the North China craton and the
Qilian-Qaidam microcontinent; Qilian HP rocks
consist of low-grade lawsonite blueschists and high-
grade garnet-bearing epidote blueschists with lenses
of glaucophane–epidote eclogites (e.g., Song et al.,
2007, 2009). Geochemical analysis indicates MORB
and OIB compositions of protoliths for both
blueschists and eclogites. E-type lawsonite eclogites
were reported by Zhang & Meng (2006); lawsonite
and its pseudomorphs occur as inclusions in garnet.
P–T estimates yield peak eclogitic conditions of
2.2–2.6 GPa and 460–540 °C (Song et al., 2007;
Wei et al., 2009). Zircon U-Pb and phengite Ar-Ar
geochronology suggest c. 472 Ma for the eclogite
facies metamorphism and 460–450 Ma for the
blueschist facies recrystallization (Song et al.,
2009).
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Chinese Western Tianshan

The late Palaeozoic Tianshan orogenic belt extends
for ~1500 km from the Fan-Karategin belt of
Tajikistan in the west via the Atbashi belt of
Kyrgyzstan to the Chinese Western HP–UHP
Tianshan in the east (e.g., Liou et al., 2009); the belt
marks the suture zone between the Central Tianshan
Arc and the Kazakhstan–Yili microcontinent, and
continues to the Central Asian Orogenic Belt.
Coesite-bearing UHP eclogites with lawsonite
pseudomorphs occur in the Chinese Western
Tianshan (e.g., L€u et al., 2009). Although lawsonite
has not yet been confirmed, the presence of its
pseudomorphs (Klemd et al., 2002) and P–T
estimates suggest the original presence of U-type
lawsonite eclogites (Wei & Clarke, 2011). P–T
estimates for the eclogitic assemblage
Grt + Omp + Lws + Gln yields peak metamorphic
conditions of 2.9–3.0 GPa at 526–540 °C; post-
temperature peak (2.4–2.7 GPa at 590 °C) isothermal
decompression evidently caused the decomposition of
lawsonite (Tian & Wei, 2013). Some UHP
metapelites contain the assemblage Grt + Gln +
Lws # Jd # Cld (L€u et al., 2012). Omphacite-
bearing zircon yielded a U-Pb age of c. 320 Ma
(Su et al., 2010), suggesting the time of the
temperature peak or the later decompression stage
(Tian & Wei, 2013). Rutile in the glaucophane–
epidote eclogite gave a U-Pb age of 318 # 7 Ma (Li
et al., 2011).

Atbashi Ridge, Kyrgyzstan

The HP–UHP belt of Kyrgyzstan is a western
extension of the Late Palaeozoic HP–UHP belts of
the Chinese Western Tianshan. Tagiri et al. (1995)
reported that eclogite from this locality contains
quartz pseudomorphs after coesite in garnet and
omphacite. Lawsonite inclusions and their
pseudomorphs within garnet were described by
Shatsky & Usova (1989); in addition, the lawsonite-
bearing garnet contains glaucophane. Hegner et al.
(2010) also confirmed the presence of lawsonite in
the garnet cores. Eclogites with N-MORB and OIB
compositions occur as lenses within garnet-bearing
epidote blueschists with the mineral assemblages
Tlc + Gln + Qz + Ph + Grt + Omp and Ep + Grt +
Gln + Qz + Ph. The lawsonite-bearing garnet
probably crystallized within the lawsonite stability
field, thus is likely an L-type lawsonite eclogite.
Moreover, the discovery of coesite pseudomorphs
in the same metamorphic complex suggests the
presence of U-type UHP lawsonite eclogite. The P–
T estimate for the Atbashi Ridge eclogites suggests
peak metamorphic conditions of 2.3–2.5 GPa at
510–570 °C, and phengite and glaucophane Ar-Ar
geochronology yielded 327–324 Ma for the eclogite
facies metamorphism (Simonov et al., 2008).

Xinxian, Western Dabie

Glaucophane- and kyanite-bearing UHP eclogites
occur in the Xinxian UHP unit of the Western Dabie
Mountains, a classic HP–UHP terrane metamorphosed
during Triassic continental collision (cf., Liou et al.,
2009). The Xinxian eclogite matrix contains
rectangular-shaped lawsonite pseudomorphs consisting
of Ep/Czo + Ky + Pg (Wei et al., 2010). The modelled
peak-stage mineral assemblage of Grt + Omp + Lws
+ Tlc + Ph + Coe # Gln # Ky constrains attending
P–T conditions to 605–613 °C and 2.8–3.3 GPa.

Monviso, Western Alps

Eclogite facies Tethyan oceanic lithosphere, the
Monviso meta-ophiolite, occurs as a 35 km-long,
8 km-wide body structurally sandwiched between the
underlying Dora-Maira Massif and the ocean-derived
metasedimentary rocks-dominated blueschist facies
units of the Piemonte Zone (cf., Lombardo et al.,
2002). It is viewed as a classic area of Alpine
subduction-zone metamorphism (e.g., Messiga et al.,
1999). Recent studies have reported the occurrence of
lawsonite eclogites (Angiboust & Agard, 2010;
Groppo & Castelli, 2010). Jadeitites formed by
metasomatic replacement of plagiogranite are
associated with eclogite facies metaserpentinites
(Compagnoni et al., 2012). At Monviso, preservation
of lawsonite is rare, but pseudomorphs are
ubiquitous. Garnet porphyroblasts of lawsonite
eclogite (Fe-Ti metagabbro) contain inclusions of
Omp (# Jd) + Lws + Chl + Qz in the cores and
Omp + Chl + Tlc + Gln + Qz near the rims;
lawsonite is not present in the matrix but its
pseudomorphs are quite common (Groppo &
Castelli, 2010). The peak metamorphic assemblage of
basalt-derived eclogite is characterized by
Omp + Grt + Ph # Gln # Lws pseudomorphs
(Angiboust & Agard, 2010; Angiboust et al., 2012a).
The Monviso lawsonite eclogite yields peak
conditions of ~550 °C and 2.5–2.7 GPa (Groppo &
Castelli, 2010; Angiboust et al., 2012a,b). Zircon U-
Pb geochronology yielded an Eocene age of
45 # 1 Ma for the metamorphism (Rubatto &
Hermann, 2003).

Kotsu/Bizan, Eastern Shikoku (Japan)

Epidote blueschists with rare precursor epidote–
glaucophane eclogites occur as a ~1.2 km-thick
coherent unit of the Cretaceous Sanbagawa Belt in
eastern Shikoku (Matsumoto et al., 2003). Recently,
lawsonite inclusions in the cores and mantles of
zoned garnet were reported from epidote–
glaucophane eclogites by Tsuchiya & Hirajima
(2013); the inclusion mineralogy of cores and mantles
are Lws + Ab + Gln + Ep + Pg and Lws + Omp +
Gln + Ep + Pg + Rt, respectively. This new E-type
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lawsonite eclogite yields lawsonite eclogite facies
conditions of ~450–550 °C and 1.3–1.8 GPa
(Tsuchiya & Hirajima, 2013).

Similar to many lawsonite eclogite localities,
rectangular/rhombic-shape pseudomorphs consisting
of mineral aggregates of Czo/Ep + Pg or Czo/
Ep + Ky # Pg constitute a reliable indicator of
former lawsonite. Thus, eclogites from the Zermatt-
Saas, Western Alps (Bearth, 1973; Oberh€ansli, 1982;
Barnicoat & Fry, 1986), the As Sifah, NE Oman
(Searle et al., 1994), the Tauern Window (Hoschek,
2004) and the Ile de Groix (El Korh et al., 2009) also
can be regarded as lawsonite eclogites (sensu lato);
these eclogites generally show MORB-like affinities.
Our review of the literature undoubtedly has
overlooked yet other localities of such lawsonite
eclogites.

Spatial and temporal distribution of HP–UHP
glaucophane-bearing rocks

More than 190 blueschist (sensu lato) units/complexes
have been re-evaluated for this study (Table S1). Our
blueschist compilation includes localities of
glaucophane (Na-amphibole) schists and/or
glaucophane metabasalts and glaucophane-bearing
eclogites. We have also included a few localities
lacking glaucophane but containing lawsonite;
eclogites lacking glaucophanitic amphibole were
excluded (i.e., hornblende-bearing eclogites are not
considered). The rare, oldest blueschist facies
metamorphic rocks are of Neoproterozoic age (Ernst,
1972; Dobretsov et al., 1987; Maruyama et al., 1996;
Brown, 2007) (Fig. 1). Although Ernst (1972) pointed

out that lawsonite is uncommon in Palaeozoic
blueschists, data accumulated during the last 40 years
fail to reflect a distinct difference in frequency
between Phanerozoic lawsonite and epidote
blueschists (Fig. 3). This suggests that the
petrological record of blueschists does not reflect a
detectable secular change in thermal regimes of
subduction zones since the end of the Proterozoic.
However, our compilation found a global absence of
lawsonite in rocks of Permian metamorphic age. We
postulate that the global lawsonite hiatus is a robust
indication of relatively warm subduction-zone
thermal regimes at this time. This may be a
consequence of the upwelling of sub-supercontinental
mantle plumes that attended the breakup of Pangea,
in the process generating large igneous provinces
such as those of Siberia, Tarim, Emeishan and
Central Europe.
The oldest lawsonite-bearing blueschists (560–

550 Ma) have been reported from eastern Anglesey,
Wales (UK) in the Anglesey–Lleyn accretionary
orogen (e.g., Gibbons & Mann, 1983; Kawai et al.,
2006, 2007). These blueschists formed within a
Pacific-type subduction zone along the convergent
margin of Avalonia in the latest Neoproterozoic
(Kawai et al., 2007). At least two pulses of lawsonite
blueschist formation are known from the Palaeozoic
(Fig. 3). Early Palaeozoic lawsonite eclogites occur in
Spitsbergen (Hirajima et al., 1988), the North Qilian
(Zhang et al., 2007), and Eastern Australia (Och
et al., 2003), as well as in circum-Pacific terranes.
Middle Palaeozoic lawsonite blueschists (including
those with lawsonite pseudomorphs) are widely
distributed in the Variscan orogenic belts of Central
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Fig. 3. Histograms showing ages of
blueschist and glaucophane-bearing eclogite
from the NeoProterozoic to the present.
The data include >190 HP–UHP
glaucophane- or lawsonite-bearing
metamorphic units and/or domains. Data
sources were newly compiled from the
literature; see Table S1. Histograms are
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ophiolites from Dilek (2003) are also
shown.

© 2013 John Wiley & Sons Ltd

444 T . TSU J IMOR I & W. G . ERNST



Europe, the Urals and the Tianshan, and from
circum-Pacific orogenic belts (the Russian Far East,
SW Japan and Eastern Australia). Although
lawsonite is not preserved in the Variscan and Ural
localities, its pseudomorphs are common (e.g.,
Maksyutov Complex: Schulte & Sindern, 2002; Bean
& Liou, 2005). Lawsonite eclogites occur in the
South and West Tianshan of the China and
Kirgizstan (Shatsky & Usova, 1989); lawsonite
eclogites from the Chinese Tianshan reached UHP
condition inasmuch as they contain coesite.

A distinct peak of lawsonite blueschists typifies the
Triassic (Fig. 3). This pulse includes Pacific-type HP
terranes of the circum-Pacific orogenic belts (North
American Cordilleran and Japan) and the continental
collision-type UHP terranes of east-central China;
lawsonite from Chinese collision-type UHP terranes
occur exclusively as pseudomorphs in kyanite-bearing
UHP eclogites (Castelli et al., 1998). Triassic
lawsonite eclogite has been described from British
Columbia (Ghent & Erdmer, 2011). Abundant
Jurassic–Cretaceous lawsonite blueschists are widely
distributed in circum-Pacific orogenic belts (North
American Cordilleran, the Andes, the Russian Far
East, Japan), the Caribbean margins, the Tethyan
orogenic belt, and the South Shetland Islands.
Lawsonite eclogites occur in the Cretaceous
Franciscan Complex (Shibakusa & Maekawa, 1997),
the Sanbagawa Belt (Tsuchiya & Hirajima, 2013), the
Caribbean (Guatemala and the Dominican Republic:
Tsujimori et al., 2006b; Zack et al., 2004), and in
Turkey (Davis & Whitney, 2006; Okay et al., 2006).
Eocene and younger lawsonite blueschists extend
discontinuously from the Alpine–Himalayan chain,
through Indonesia + New Caledonia to New
Zealand. Lawsonite eclogites are present in the Alps
(Corsica: Vitale Brovarone et al., 2011; Monviso:
Groppo & Castelli, 2010), Sulawesi Island, Indonesia
(Parkinson et al., 1998) and New Caledonia (Clarke
et al., 1997). Lawsonite blueschists dredged from a
serpentinite seamount in the Mariana forearc include
micaceous pumpellyite-bearing clasts that yielded a
phengite K-Ar age of c. 48 Ma, coeval with
subduction initiation of the Pacific plate beneath the
Philippine Sea plate along the Mariana trench
(Maekawa et al., 1993, 2002). The youngest
lawsonite-bearing rock might be from an uplifted
segment of the active Cascadia margin; its age of the
metamorphism is inferred to be c. 7–12 Ma based on
apatite fission-track dating (Brandon & Calderwood,
1990).

DISCUSSION

Natural record of lawsonite eclogitization

Modelled P–T paths for slab surfaces, both warm
(SW Japan/Nankai) and cool (NE Japan/Tohoku)
subduction zones (Syracuse et al., 2010), suggest that

normal subduction can promote the prograde
metamorphic transformation of oceanic crust from
lawsonite blueschist facies to lawsonite eclogite facies
assemblages (Fig. 1). How does the downgoing
oceanic crust transform to lawsonite eclogite in a
subduction zone? Numerous observations have led to
a general consensus on the nature of the blueschist
facies to eclogite facies boundary (e.g., Oberh€ansli,
1982; Reinsch, 1979; Ridley, 1984; Schliestedt, 1986;
Vitale Brovarone & Agard, 2013; Vitale Brovarone
et al., 2011). Due to the wide transitional P–T zone,
high-grade blueschists can contain the eclogite facies
mineral assemblage Grt + Omp + Qz, whereas low-
temperature eclogites can include glaucophane as an
eclogite facies mineral. Oh & Liou (1998) suggested
that the reaction Gln + Ep = Grt + Omp + Pg +
Qz + H2O serves as the P–T boundary between
those two facies. However, this reaction is divariant
in NCFMASH only if Fe and Mg are independent
components of the system (Molina & Poli, 1998).
Moreover, the disappearance of Gln + Ep does not
take place in the lawsonite stability field. Recent
thermodynamic modelling for the MORB
composition in the system NCKMnFMASHO (+
Ms + Coe/Qz + H2O) predicts that no specific
discontinuous reaction constrains the blueschist facies
to eclogite facies transition in the lawsonite stability
field (Wei & Clarke, 2011); both omphacite and
garnet can coexist over a wide range of lawsonite
blueschist facies equilibria. In calculated phase
diagrams, most phase changes in the lawsonite
stability field in basaltic rocks are continuous, and
dehydration is not restricted to the inferred
metamorphic facies transitions (e.g., Hacker et al.,
2003; Wei & Clarke, 2011).
At the regional scale, metamorphic field mapping

along a relict prograde metamorphic gradient in NW
New Caledonia suggests a transition from lawsonite
blueschist to lawsonite eclogite at ~500–520 °C and
c.1.8 GPa (Vitale Brovarone & Agard, 2013).
Although a remarkable pressure gap (0.6 GPa) defines
the tectonic break between eclogite facies meta-
ophiolite and the eclogite facies metamorphosed
accretionary wedge, the prograde blueschist-to-
eclogite transition is gradual. A continuous
metamorphic field gradient from lawsonite blueschist
to lawsonite eclogite is also preserved in the coherent
blueschist sheet at Ward Creek, Franciscan Complex
(Maruyama & Liou, 1988). The first appearance of
garnet (i.e., lawsonite eclogite facies mineral
assemblage) in this blueschist unit was estimated as
>~290 °C and ~0.8–0.9 GPa. However, inasmuch as
relatively low-T reactions during early eclogitization
are sluggish in subducting oceanic crust, transition
from lawsonite blueschist to lawsonite eclogite is not
necessarily gradual, but may be a function of pressure
overstepping.
Progressive eclogitization within the lawsonite

stability field is also sporadically preserved in the
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zoned garnet (e.g., Tsujimori et al., 2006b; Groppo &
Castelli, 2010). In lawsonite eclogite from the South
Motagua M!elange, lawsonite inclusions within garnet
contain rare pumpellyite; its preservation
(pumpellyite-(Al) sensu stricto) and the presence of
synmetamorphic brittle deformation suggest that
eclogitization was initiated at ~300 °C (Tsujimori
et al., 2006b).

Figure 4 shows two examples of synmetamorphic
brittle deformations preserved in the South Motagua
lawsonite eclogite. Pre-eclogite facies brittle
fracturing is evident by shapes and distribution of

irregular-shaped inclusions within a prograde-zoned
garnet porphyroblast (Fig. 4a). Garnet growth was
initiated along brittle fractures of the jadeitic
pyroxene-rich matrix; it is also clear that garnet
enlargement strongly fractionates elements in the
system, and fossilizes significant volumes of precursor
phases + textures during incipient eclogitization. Syn-
eclogite facies crack-seal veins also are traced into
euhedral garnet as bands (Fig. 4b); fluid-induced
oscillatory zoning and abnormal grain growth is
apparent in garnet. All these microtextures (Fig. 4)
infer not only brittle behaviour in the blueschist-to-

(a)

(b)

Fig. 4. Brittle deformation features
recognized as microtextures in natural
lawsonite eclogites. (a) X-ray image (Na)
showing pyroxene inclusions within a
prograde-zoned garnet in a jadeite-bearing
lawsonite eclogite (South Motagua
M!elange, Guatemala; Tsujimori et al.,
2006b). The textures suggest crystal growth
of garnet along brittle fractures in the
pyroxene-rich matrix during eclogitization.
An index map in the figure is of Mn. (b) X-
ray images (Mg, Mn and Al) of the same
area of Type-I lawsonite eclogite (Tsujimori
et al., 2006b) showing crack-seal
omphacite + lawsonite veins crosscutting
the matrix and garnet during garnet
growth. The three images also show the
merging growth of garnet as well as
inheritance of a garnet seed crystal.
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eclogite transformation, but also reflect incomplete
recrystallization, anisotropic mineral growth, and
mass transfer associated with fluid infiltration over a
relatively large scale during eclogite facies
metamorphism. Such natural features evoke questions
regarding the elegant results of thermodynamic
modelling for LT eclogites assuming simple interfacial
equilibrium in a fixed effective bulk-rock composition.

In addition to the above examples, lawsonite
eclogite from the Monviso meta-ophiolite contains
precursor glaucophane and coexisting Omp + Jd
within garnet cores, suggesting a metamorphic
condition of < 300 °C and < 1.4 GPa for the pre-
eclogite stage (Groppo & Castelli, 2010).
Synmetamorphic brittle deformation has been also
described in lawsonite eclogite facies metagabbros.
Angiboust et al. (2012b) described Monviso eclogite
breccias cemented by interclast matrix with
Grt + Omp + Lws (pseudomorphs); crack-seal
omphacite veins and garnet fractures provide
additional evidence for polyphase fracturing-healing
events during lawsonite eclogite facies
metamorphism.

Considering these observations, it is apparent that
brittle fracturing and fluid infiltration are common
phenomenon in the subducting oceanic crust during
prograde lawsonite eclogite facies metamorphism.

Further comprehensive study of synmetamorphic
brittle behaviour of lawsonite eclogites should lead to
a new understanding of intra-slab seismicity at
~30–80 km depths in the forearc region (e.g.,
Angiboust et al., 2012b).

Multiple fluid-infiltration records in lawsonite

Flow of slab-derived fluids enriched in Si, Al, Na and
Ca enhances metamorphic + metasomatic reactions
and precipitation of HP minerals.In some cases, intra-
slab flow causes extensive elemental leaching (cf.,
Spandler & Pirard, 2013). How does lawsonite record
subduction-zone fluid flow? An apparent example of
lawsonite preserving evidence of multiple fluid
infiltration is shown in Fig. 5. A peculiar metasomatic
rock consisting of ~70–90 vol% lawsonite occurs as
tectonic inclusions within the South Motagua M!elange
(Tsujimori et al., 2006c; Fig. 5a). The rock consists
principally of fluid precipitates and represents the
extreme of lithological variation in “P-type” jadeitite
that was formed by precipitation directly from a fluid
(Tsujimori & Harlow, 2012; Flores et al., 2013).
Randomly oriented lawsonite crystals up to 5 cm long
show sector- and oscillatory-growth zoning on a
millimetre to submicrometre scale (Fig. 5b–d); Sr and
LREE are enriched in the {010} sector. X-ray images
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Fig. 5. Lawsonite-rich metasomatic rock preserving a fluid-path way in the high-pressure serpentinite m!elange along a subduction-
zone channel. (a) Euhedral coarse-grained lawsonite crystals cemented by interstitial phengite and jadeite. (b) Plane-polarized light
(PPL) view of lawsonite intergrowth filled with fine-grained aggregates of jadeite and phengite. Cr-bearing pyroxene and lawsonite
are green and pale pink, respectively. See the Cr distribution in (e). (c) X-ray (Na) image of (b) showing jadeititic pyroxene within
lawsonite crystals and interstitial pockets. (d) X-ray (Sr) image of (e) showing enrichment of Sr and oscillatory zoning at the rims
of lawsonite crystals. (e) X-ray (Sr) image of (b) showing a Cr-rich fluid path. (f) Cr-rich jadeite within lawsonite in the boxed area
of (b) [PPL].

© 2013 John Wiley & Sons Ltd

LAWSONITE BLUESCHISTS AND LAWSONITE ECLOGITES 447



show millimetre-scale flow paths (<4 mm wide) of Cr-
rich fluids crosscutting lawsonite crystals; these
textures indicate that fluid infiltration occurred after
lawsonite crystallization (Fig. 5e). The fluid flow paths
follow the track of Cr-bearing pinkish lawsonite (~0.6
wt% Cr2O3) with inclusions of Cr-rich (kosmochloric)
jadeite (up to ~22 wt% Cr2O3, ko25–63) and Cr-rich
phengite (up to ~6 wt% Cr2O3) (Fig. 5b,f). It is
noteworthy that the rock lacks relict Cr-rich minerals,
such as chromite and uvarovite, which can act as an
internal source of Cr. These microtextures and mineral
compositions indicate a chronological sequence of
fluid-infiltration events: lawsonite grains together with
jadeitic pyroxene precipitated from subduction-zone
aqueous fluids veining the overlying mantle wedge,
and subsequently a Cr-rich fluid infiltrated the
lawsonitite, probably along microfractures, and
crystallized Cr-rich jadeite. Lawsonite acted as a sink
of Sr and LREE (e.g., Spandler & Pirard, 2013).
Moreover, although generally regarded as relatively
immobile during metamorphism, petrological
observations indicate heightened mobility of Cr in
subduction-zone metasomatic fluids. Except for fluid-
inclusion studies, direct tracking of a subduction-
zone aqueous phase is not simple. However,
lawsonite-bearing HP metasomatic rocks have a
great potential for decoding the origin and history of
such fluids.

Lawsonite blueschist facies overprinting during
decompression

Blueschist facies overprinting within the lawsonite
stability field has been reported from high-grade HP
metamorphic rocks of some Pacific-type blueschist
belts, such as the Franciscan Complex, and the South
Motagua M!elange (e.g., Wakabayashi, 1990; Krogh
et al., 1994; Tsujimori et al., 2006b). These
parageneses indicate that the rocks were refrigerated
and hydrated during exhumation. Such HP rocks
commonly occur as tectonic blocks within
serpentinite-matrix tectonic m!elange, and their P–T
trajectories are characterized by either hairpin-like or
counterclockwise paths. For Pacific-type convergent

margins, some tectonic slices of the subducting
oceanic crust recrystallized to eclogite facies evidently
return surfaceward along the subduction channel,
propelled by buoyancy of the enveloping serpentinite
(e.g., Ernst, 1970; Guillot et al., 2000). These slices
ascend to blueschist facies levels and appear to have
been sequestered at shallower depths for a
considerable time interval. The question arises, how
long are the exhuming eclogite facies slices retained
at blueschist facies conditions? Recent geochronology
of Franciscan eclogites revealed a c. 7 Ma gap
between eclogite facies metamorphism (153 Ma) and
lawsonite blueschist facies overprint (146 Ma)
(Anczkiewicz et al., 2004; Mulcahy et al., 2009).
Zircon U-Pb ages of lawsonite eclogite xenoliths
from the Colorado Plateau diatremes range from 81
to 33 Ma and reveal that these eclogite fragments
have been stored in a slab–wedge-mantle interface for
c. 50 Ma (Usui et al., 2003). The Eocene age of
blueschist clasts dredged from an active serpentinite
diaper in the Mariana forearc suggests that these
blueschist clasts remained for c. 48 Ma in a
serpentinite m!elange under the forearc region
(Maekawa et al., 2002).
Considering these facts, exhumed eclogite tectonic

blocks within a HP serpentinite m!elange can remain
at depth for a lengthy time, and consequently can
have undergone significant later hydration/
recrystallization (Fig. 6). Significant cooling and
continuous H2O supply from the dehydrating oceanic
slab to the exhuming HP serpentinite m!elange
enhance the interaction between HP fragments and
host serpentinite; moreover, they may cause
lawsonite blueschist facies overprinting and
consequently prevent breakdown of lawsonite during
its decompression. In the case of L-type lawsonite
eclogites, preservation of prograde and peak
lawsonite-bearing mineral assemblages can be
retained by rapid exhumation (Whitney & Davis,
2006). Even if the lawsonite eclogites had a long
residence time under lawsonite blueschist facies
conditions, fluid infiltration without heating and
significant deformation allow partial preservation of
the precursor lawsonite-bearing mineral assemblage.
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PERSPECTIVES

Recent recognition of intense material recycling of
oceanic/continental crust through deep subduction,
mantle upwelling and exhumation to the Earth’s
surface (cf., Liou & Tsujimori, 2013) requires the
reassessment of various geological processes in Pacific-
type convergent margins where HP–LT rocks form.
The subduction zones of such margins promote large-
scale mass circulation into the deep mantle, and have
done so since plate tectonics began. In fact, Usui et al.
(2003) provided conclusive evidence of coesite-bearing
lawsonite eclogite xenoliths in the Colorado Plateau
that were derived from the subducted Farallon plate.
Hence understanding the extent of eclogitization of
subducting oceanic crust within the lawsonite stability
field is of crucial importance.

The dynamic thermal regimes recorded in
lawsonite blueschists and eclogites are in accord with
numerical models of typical subduction zones
(Fig. 1). Subduction zone P–T conditions control
H2O-carrying capacity of the downgoing oceanic
slabs. Numerical modelling demonstrates that cold
slabs can retain H2O beyond sub-arc depths (e.g.,
Hacker, 2008). Although the total amount of H2O in
lawsonite and phengite in eclogitized oceanic crust is
less than in fully serpentinized slab peridotites,
lawsonite-bearing crust-derived metamorphic rocks
have more potential to retain and carry trace
elements, such as K, Rb, Cs, U, Pb and Sr, and
isotope signatures to beyond sub-arc depths (e.g.,
Vitale Brovarone et al., 2014). Numerical models also
allow the inference that eclogites that return are
either sampled contemporaneously from the
subduction channel or were transported from greater
depths in the developing HP m!elange (Gerya et al.,
2002). Marschall & Schumacher (2012) proposed a
model whereby dehydration of diapiric upwelling of
HP m!elange (a mixture of crustal-derived
metamorphic rocks, slab fluids-related metasomatic
lithologies, and serpentinized wedge-mantle
peridotites) at the slab–mantle interface would cause
fluid-induced partial melting and consequently would
control the geochemical signatures of arc volcanics.
Experimental data of trace element partition
coefficients for lawsonite show a preference for
LREE/HREE and Be; consequently the observed B/
Be decrease in Phanerozoic arc magmas with
increasing distance from the trench can be explained
by lawsonite breakdown (Martin et al., 2011). After
decomposition, the remaining trace elements
inherited from the precursor lawsonite in some UHP
phases may return to the Earth’s surface via a deep
mantle plume, or may be accidentally trapped as
peculiar UHP phases (such as LREE-rich CaTiSi-
perovskites inclusions within Group-2 Brazilian
diamonds: Bulanova et al., 2010) in diamonds and/or
chromitites in the mantle transition zone (Liou &
Tsujimori, 2013).

As documented above, the recent recognition of
lawsonite eclogite localities has increased
significantly. However, complete preservation of L-
type eclogites that return to the surface is rare.
Integrated approaches continue to provide better
answers for some old but persistent questions, such
as: Why are lawsonite eclogites rare? What is a
suitable tectonic setting for their preservation?
Systematic and precise age data for subduction,
prograde blueschist facies and eclogite facies
metamorphism and blueschist facies overprint (if
refrigerant conditions are maintained on exhumation)
together with precise P–T estimates are essential in
order to realistically describe ancient Pacific-type
plate convergent margins.
The blueschist-to-eclogite transition within the

lawsonite stability field for oceanic crust seems to be
strongly controlled by reaction kinetics. Although the
concept of metamorphic facies does not take rates into
account, in order to evaluate eclogitization and related
solid-earth processes, quantitative understanding of
the reaction kinetics of eclogite facies mineral growth,
reassessment of grain-scale stresses, dynamics of
diffusion-limited mineral growth, dynamic domain
equilibrium during fluid infiltration, and elemental
fractionation and chemical transportation during
metamorphic differentiation + mineral growth are
crucial topics requiring further research. In any case,
the classical and neoclassical multidisciplinary
approaches continue to provide opportunities to link
HP–LT metamorphism of ancient subduction zones to
geophysical observations of modern analogues, to
evaluate hydration and dehydration along the
subduction channels, and subsequent slab–mantle
interaction.
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