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We report a newly discovered assemblage of talc–kyanite in an amphibolite from the Isimani Suite of the
Paleoproterozoic Usagaran Belt, central Tanzania. The amphibolite is characterized by the mineral assemblage
of clinoamphibole, kyanite, talc with minor rutile, quartz, dolomite, and rare barite. The high Fe3+/(Fe3+ + Fe2+)
ratio (0.48–0.80) of clinoamphibole and the presence of sulfate (barite) indicate a very–high oxidation state
during metamorphism. P–T pseudosection modelling predicts that the studied talc– and kyanite–bearing am-
phibolites formed at high–pressure conditions (P > 1.0 GPa). Moreover, the modelling suggests formation of
talc + kyanite + clinoamphibole at a highly oxidizing condition with CO2 fluid. This talc–kyanite association
provides an index of high–pressure metamorphism of the Usagaran Belt and marks the oldest record of the talc–
kyanite association in regional metamorphism in the Earth’s history.
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INTRODUCTION

Occurrence of talc in crustal composition rocks is indicative
of high–pressure conditions. Since recognition of the sig-
nificance of talc–kyanite association by experimental stud-
ied by Schreyer and Seifert (1969), various talc–bearing
mineral assemblages, such as talc–kyanite, talc–phengite,
talc–paragonite, talc–epidote, and talc–lawsonite, in crustal
metamorphic rocks have been reported as pressure–indica-
tive assemblages from paleo–convergent plate boundaries
of Neoproterozoic and younger orogens (e.g., Vrána and
Barr, 1972; Kulke and Schreyer, 1973; Chinner and Dixon,
1973; Råheim and Green, 1974; Miller, 1977; Chopin,
1981; Zhang and Liou, 1994; Sisson et al., 1997; Zack et
al., 2001; Johnson and Oliver, 2002; Okay, 2002). Most
talc–bearing crustal metamorphic rocks are basaltic eclo-
gites (e.g., Massonne and Kopp, 2005; Groppo and Castel-
li, 2010), and blueschist– and eclogite–facies metachert
(piemontite–bearingmetaquartzites) (Abraham and Schrey-
er, 1976; Izadyar et al., 2000; Ubukawa et al., 2007) and
rare lawsonite–bearing metabasites (Okay, 2002). Another
rare type of talc–bearing crustal metamorphic rock is the so–

called ‘whiteschist’ which is characterized by the mineral
assemblage talc + kyanite ± quartz or coesite (Schreyer,
1974; Chopin, 1984; Compagnoni and Hirajima, 2001;
Franz et al., 2013). Excepting eclogites, talc–bearing meta-
morphic rocks have whole–rock compositions of very high
Mg/(Mg + Fe2+) ratio and very low Ca content (e.g., Franz
et al., 2013). However, we found talc– and kyanite–bearing
amphibolite from the Paleoproterozoic Usagaran Belt, Tan-
zania. The amphibolite is characterized by the mineral as-
semblage of talc + kyanite + clinoamphibole ± quartz ±
dolomite. Although the occurrence of the famous ‘yoder-
ite–bearing whiteschist’ with talc–kyanite association has
been well known in the Neoproterozoic Mozambique Belt
of Tanzania (Mautia Hill: McKie, 1959; Jöns and Schenk,
2004), this is the first finding of talc–kyanite association in
the Paleoproterozoic orogen of Tanzania.

In this paper, we describe the paragenesis of a talc–
and kyanite–bearing amphibolite and address geological
significance. Throughout this paper we use the mineral
abbreviations recommended by Whitney and Evans
(2010) with the exception of yoderite (Yod).

GEOLOGICAL OUTLINE

The Paleoproterozoic Usagaran Belt in central Tanzania is
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located at the south–eastern margin of the Archean Tanza-
nia Craton (Fig. 1a) and constitutes a NE–SW to E–W
trending orogenic belt that borders to the Neoproterozoic
Mozambique Belt (MZB) of the East African Orogen. The
Usagaran Belt is subdivided into three major litho–tecton-
ic units including the Isimani Suite and the Konse, and
Ndembera Groups (e.g., Legler et al., 2015). In particular,
the Isimani Suite is a subduction/collision–related geotec-
tonic unit; the unit comprises of orthogneiss with kyanite–
bearing paragneiss and mafic amphibolites that locally
preserved high–pressure granulites and eclogites (e.g.,
Möller et al., 1995; Collins et al., 2004). The subduction
and formation of the ~ 2.0 Ga eclogite with MORB affin-
ity preserved at the Yalumba Hill (Möller et al., 1995) are
concomitant with collision related garnet–bearing mafic–
ultramafic body including a ‘ruby’ deposit near Winza,
kyanite–biotite–garnet paragneiss (2.02–1.99 Ga) (e.g.,
Lenoir et al., 1994; Collins et al., 2004). The Ndembera
and Konse Groups comprise relatively younger volcano–
sedimentary and granitoid rock assemblages that formed

between 1.92 and 1.8 Ga in the arc and back arc tectonic
setting (Sommer et al., 2005; Bahame et al., 2016).

We have studied a specimen collected in a metamor-
phosed mafic to ultramafic body of the Isimani Suite from
the village of Winza, about 5 km south of the Yalumba
Hill eclogite (Fig. 1b). The body was mined locally to
obtain gem–quality corundum (Schwarz et al., 2008).
Metamorphic zircon from retrograded eclogites from the
Yalumba Hill yielded U–Pb age of ~ 2.0 Ga (Möller et al.,
1995).

SAMPLE DESCRIPTION

The talc– and kyanite–bearing amphibolite (sample KTA,
Fig. 2a) consists mainly of clinoamphibole, kyanite, talc,
with minor amount of rutile, dolomite, quartz, chlorapa-
tite, zircon, and barite. Rare relict chromian spinel partial-
ly replaced by corundum is also found as accessory min-
eral; the occurrence of corundum reflects chemical
equilibrium in local domains. Clinoamphibole (~ 0.3–2
mm in length) forms a granoblastic matrix that contains
porphyroblastic kyanite (~ 1–5 mm in size). Both cli-
noamphibole and kyanite are closely associated with talc
(Figs. 2b and 2c). Clinoamphibole contains inclusions of
kyanite, quartz, talc, and dolomite. Fine–grained barite
(typically <10 µm) occurs commonly with dolomite
(Fig. 2d); the largest grain reaches ~ 0.2 mm in size. Iden-
tification of the minerals was based on a combination of
optical property and chemical compositions obtained by
FE–SEM with EDS.

Bulk–rock major elements composition of the sam-
ple KTA shows low SiO2 (43.74 wt%), high Al2O3 (22.93
wt%), with MgO (12.31 wt%), Fe2O3 (6.47 wt%), CaO
(9.94 wt%), and Na2O (1.26 wt%); the loss of ignition was
2.91 wt%. The major elements together with high Ni (790
µg·g−1), Cr (770 µg·g−1), Sr (209 µg·g−1), and Ba (84
µg·g−1) and the presence of relict chromite (Cr#[= Cr/
(Cr + Al)] ~ 0.34) strongly suggest that the protolith of
the rock was an olivine–rich cumulus gabbro. Note that
the bulk–rock analysis was carried out at the Activation
Laboratories Ltd., Canada, using Code 4Litho Lithogeo-
chemistry Package; the package uses fusion inductively
coupled plasma optical emission spectrometry (FUS–
ICPOES) and inductively coupled plasma mass spectros-
copy (FUS–ICPMS) for the major and trace element anal-
yses, respectively. Further details of whole–rock geo-
chemistry will be published after further research de-
velopment.

MINERAL COMPOSITIONS

Table 1 shows the representative major element composi-

Figure 1. (a) A simplified geological map of the Usagaran Belt
(modified from Legler et al., 2015) showing location of the Win-
za ‘ruby’ deposit. (b) Geological map showing lithological var-
iations of the Isimani Suite of the Usagaran Belt near Winza.
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tions of clinoamphibole, kyanite, and talc. The composi-
tions were determined using the JEOL JXA–8800R elec-
tron microprobe at Tohoku University. The quantitative
analyses were performed with a 15 kV acceleration volt-
age and a 12 nA beam current resulting in a 3 µm spot
diameter; the oxide ZAF method was employed for matrix
corrections and natural and synthetic silicate and oxide
minerals were used for calibrations.

Clinoamphibole has a tschermakitic composition
with Si = 6.2–6.5 a.p.f.u. (O = 23), [B]Na (Na in the B–
site) = 0.13–0.17, [A](Na + K) = 0.28–0.43, and Mg/(Mg +
Fe2+) = 0.88–0.94; Al2O3 content reaches up to 17.1 wt%.
Notably the composition is characterized by high Fe3+/
(Fe3+ + Fe2+) ratio (0.48–0.80), suggesting an oxidation
state higher than magnetite–hematite buffer (Fig. 3). No
significant chemical zonation was observed in clinoam-
phibole.

Kyanite contains 0.4–0.5 wt% Fe2O3.
Talc contains moderate Al (1.3–2.6 Al2O3 wt%;

0.10–0.20 a.p.f.u for O = 11) and low Fe [Mg/(Mg +
Fe2+) = 0.95]. The Al content is significantly higher than
talc in coesite–bearing ultra–high pressure eclogite (e.g.,
Mattinson et al., 2004), but it is lower than yoderite–bear-
ing talc–kyanite schist that formed at a peak pressure of
1.0–1.1 GPa (Jöns and Schenk, 2004).

DISCUSSION

Comparison with whiteschists worldwide

Talc–kyanite schist is synonymous with ‘whiteschist’ that
occurs in high– to ultrahigh–pressure (UHP) rocks
(Schreyer, 1974, 1988); note that the original definition
of ‘whiteschist’ has been expanded to the UHP rock like
coesite–bearing pyrope quartzite in the Dora–Maira
Massif, Western Alps (e.g., Chopin and Schertl, 1999;
Compagnoni and Hirajima, 2001). In the MASH (MgO–
Al2O3–SiO2–H2O) system, the Tlc + Ky mineral assem-
blage is stable at higher pressure and temperature side of
the Chl + Qz and/or Yod + Qz assemblage and at higher
pressure and lower temperature side of the Crd + Yod as-
semblage (Schreyer and Seifert, 1969; Fockenberg and
Schreyer, 1994). The whiteschists worldwide have proto-
liths of Mg–rich and low–Ca lithologies. Comparing with
‘whiteschist’ in the literature, our amphibolite has a Mg/Si
atomic ratio (0.42) resembling to some whiteschists (e.g.,
Franz et al., 2013); the ratio is higher than that of average
MORB (0.28). Ca/Si ratio (0.24) of the sample KTA is
much higher than whiteschists worldwide (<0.08: Franz
et al., 2013). However, it is noteworthy that the Mg/Si
ratio and the high oxidation state of the sample KTA

Figure 2. (a) Photograph of polished
surface of talc– and kyanite–bearing
amphibolite (KTA) from the Usa-
garan Belt, showing dark–greenish
amphibole matrix with porphyro-
blastic kyanite. (b) Crossed–polar-
ized photomicrograph showing
talc–kyanite association with am-
phibole (KTA). (c) Back–scattered
electron (BSE) image showing
coexistence of kyanite, talc and
clinoamphibole. (d) BSE image
showing fine–grained barite (Brt)
associated with dolomite (Dol).
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shares a common feature with other whiteschists. Jöns and
Schenk (2004) reported a Hbl–Ky–Tlc–Qz schist from the
Mautia Hill, where is the type locality of yoderite. The
mineral paragenesis of our sample might somewhat re-
semble the Hbl–Ky–Tlc–Qz schist associated with yoder-

ite–bearing ‘whiteschist’ of the Mautia Hill. Although our
sample does not bear hematite that was described in the
Hbl–Ky–Tlc–Qz schist of the Mautia Hill, the occurrence
of sulfate (barite) supports very high oxidation state dur-
ing high–grade metamorphism (e.g., Tumiati et al., 2015;
Wang et al., 2016).

P–T pseudosections

The stability field of talc + kyanite strongly depends on
oxygen fugacity and the amount of CO2 in fluid (e.g.,
Franz et al., 2013). Therefore, we performed a P–T pseu-
dosection (equilibrium phase diagram) modeling using
the THERIAK/DOMINO program (de Capitani and Pet-
rakakis, 2010) with together thermodynamic dataset of
Holland and Powell (1998) at a highly oxidizing condi-
tion (Fig. 4). We adopted the solid solution models of
minerals that were used in Tsujimori and Ernst (2014).
Treatment of yoderite was based on the approach of
Franz et al. (2013). We assumed hematite, H2O and
CO2 in excess; an excess of hematite is necessary to ob-
tain Yod–bearing phase equilibria. Although solid solu-
tion models for clinoamphibole casts doubt on the relia-
bility for Fe3+–rich Ca–amphibole, the chemographic
relations in P–T space are helpful in order to understand
natural metamorphic parageneses.

Table 1. Representative electron–microprobe analyses of clinoam-
phibole, kyanite and talc

FeO*, total Fe as Fe2+.
Fe2+/Fe3+ ratio of clinoamphibole was estimated based on total cat-
ion = 13 excluding Ca, Na, and K.

Figure 3. A frequency diagram showing Fe3+/(Fe3+ + Fe2+) ratio of
clinoamphibole of the studied talc– and kyanite–bearing amphib-
olite. For comparison, clinoamphibole (mostly ‘hornblendic’) in
hematite–bearing mafic schists of the biotite–zone of Sambagawa
Belt, central Shikoku (Otsuki and Banno, 1990) is also shown.
The arrows represent Fe3+/(Fe3+ + Fe2+) ratio of natural clinoam-
phiboles from starting materials to experimental run products
(Clowe et al., 1988). MH, magnetite–hematite buffer.

Figure 4. An equilibrium phase diagram of the sample KTA in the
system Na–Ca–Mg–Fe–Al–Si–H–O–C with excess hematite, H2O
and CO2. The stability fields of Tlc + Ky + Amp, Yod + Ky +
Amp + Pl (or Pg), and garnet–bearing mineral assemblage (Grt)
are highlighted; note that quartz, hematite, and dolomite are also
stable in these fields. Bold lines represent the lower T limit of
clinoamphibole (Amp–in) and the stability of yoderite (Yod).

Paleoproterozoic talc–kyanite amphibolite 319



As shown in Figure 4, the stability of Yod–bearing
mineral assemblages at up to ~ 1.0 GPa gives a lower
pressure limit of the Tlc + Ky + Amp assemblage. Be-
cause of the highly–oxidized condition to stabilize hema-
tite, the stability field of garnet–bearing mineral assem-
blage is limited at T > ~ 840 °C and P > ~ 1.5 GPa. Satura-
tion of CO2 affects the stability of epidote. If we assume
a CO2–free system, epidote becomes stable instead of
dolomite at the stability of the Tlc + Ky + Amp assem-
blage of Figure 4.

Geological significance

Both natural and experimental evidences have suggested
that a highly oxidized condition is preferable for some
talc–bearing mineral assemblages in crustal composition
rocks (e.g., Fockenberg and Schreyer, 1994; Johnson and
Oliver, 2002; Mattinson et al., 2004; Jöns and Schenk,
2004; Franz et al., 2013). The presence of barite as well
as the high Fe3+/(Fe3+ + Fe2+) ratio of clinoamphibole
strongly suggests a higher oxidizing condition than the
MH (magnetite–hematite) buffer (Fig. 3). Our new find-
ing might indicate that the talc–kyanite association in am-
phibolite is a result of high oxidation state during meta-
morphism. Either extensive oxidation of protolith or
fluid–mediated syn–metamorphic oxidation would be a
possible scenario.

Excepting talc–bearing eclogites, the occurrence of
the ‘whiteschist’–like metamorphic rocks with the Tlc +
Ky assemblage is rare. All ‘whiteschist’–like rocks in the
literature are found in Neoproterozoic and younger oro-
gens. However, our new finding of the talc– and kyanite–
bearing amphibolite from a Paleoproterozoic orogen
marks the oldest record of the Tlc + Ky assemblage.
The ‘whiteschist’ has been considered as a petrotectonic
indicator of high– (or ultrahigh–) pressure collisional
metamorphism (Schreyer, 1974; Chopin, 2003). Our find-
ing will give a new insight into not only the collisional
metamorphism of ~ 2.0 Ga in the Usagaran Belt but also
extensive oxidation event of the crustal rocks before or
during metamorphism.
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